Step |
Hyp |
Ref |
Expression |
1 |
|
riin0 |
⊢ ( 𝐼 = ∅ → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = 𝑋 ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = 𝑋 ) |
3 |
|
mre1cl |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → 𝑋 ∈ 𝐶 ) |
5 |
2 4
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 = ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |
6 |
|
mress |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ⊆ 𝑋 ) |
7 |
6
|
ex |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋 ) ) |
8 |
7
|
ralimdv |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ) ) |
9 |
8
|
imp |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ) |
10 |
|
riinn0 |
⊢ ( ( ∀ 𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = ∩ 𝑦 ∈ 𝐼 𝑆 ) |
11 |
9 10
|
sylan |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) = ∩ 𝑦 ∈ 𝐼 𝑆 ) |
12 |
|
simpll |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → 𝐼 ≠ ∅ ) |
14 |
|
simplr |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |
15 |
|
mreiincl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |
16 |
12 13 14 15
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) |
17 |
11 16
|
eqeltrd |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) ∧ 𝐼 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |
18 |
5 17
|
pm2.61dane |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆 ) ∈ 𝐶 ) |