| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rint0 | 
							⊢ ( 𝑆  =  ∅  →  ( 𝑋  ∩  ∩  𝑆 )  =  𝑋 )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶 )  ∧  𝑆  =  ∅ )  →  ( 𝑋  ∩  ∩  𝑆 )  =  𝑋 )  | 
						
						
							| 3 | 
							
								
							 | 
							mre1cl | 
							⊢ ( 𝐶  ∈  ( Moore ‘ 𝑋 )  →  𝑋  ∈  𝐶 )  | 
						
						
							| 4 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶 )  ∧  𝑆  =  ∅ )  →  𝑋  ∈  𝐶 )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶 )  ∧  𝑆  =  ∅ )  →  ( 𝑋  ∩  ∩  𝑆 )  ∈  𝐶 )  | 
						
						
							| 6 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶  ∧  𝑆  ≠  ∅ )  →  𝑆  ⊆  𝐶 )  | 
						
						
							| 7 | 
							
								
							 | 
							mresspw | 
							⊢ ( 𝐶  ∈  ( Moore ‘ 𝑋 )  →  𝐶  ⊆  𝒫  𝑋 )  | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶  ∧  𝑆  ≠  ∅ )  →  𝐶  ⊆  𝒫  𝑋 )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							sstrd | 
							⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶  ∧  𝑆  ≠  ∅ )  →  𝑆  ⊆  𝒫  𝑋 )  | 
						
						
							| 10 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶  ∧  𝑆  ≠  ∅ )  →  𝑆  ≠  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							rintn0 | 
							⊢ ( ( 𝑆  ⊆  𝒫  𝑋  ∧  𝑆  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑆 )  =  ∩  𝑆 )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							syl2anc | 
							⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶  ∧  𝑆  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑆 )  =  ∩  𝑆 )  | 
						
						
							| 13 | 
							
								
							 | 
							mreintcl | 
							⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶  ∧  𝑆  ≠  ∅ )  →  ∩  𝑆  ∈  𝐶 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqeltrd | 
							⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶  ∧  𝑆  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑆 )  ∈  𝐶 )  | 
						
						
							| 15 | 
							
								14
							 | 
							3expa | 
							⊢ ( ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶 )  ∧  𝑆  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑆 )  ∈  𝐶 )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							pm2.61dane | 
							⊢ ( ( 𝐶  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ⊆  𝐶 )  →  ( 𝑋  ∩  ∩  𝑆 )  ∈  𝐶 )  |