Metamath Proof Explorer


Theorem mress

Description: A Moore-closed subset is a subset. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Assertion mress ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → 𝑆𝑋 )

Proof

Step Hyp Ref Expression
1 mresspw ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ⊆ 𝒫 𝑋 )
2 1 sselda ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → 𝑆 ∈ 𝒫 𝑋 )
3 2 elpwid ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → 𝑆𝑋 )