Step |
Hyp |
Ref |
Expression |
1 |
|
mressmrcd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mressmrcd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mressmrcd.3 |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
4 |
|
mressmrcd.4 |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
5 |
1 2
|
mrcssvd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑇 ) ⊆ 𝑋 ) |
6 |
1 2 3 5
|
mrcssd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) ⊆ ( 𝑁 ‘ ( 𝑁 ‘ 𝑇 ) ) ) |
7 |
3 5
|
sstrd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
8 |
4 7
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
9 |
1 2 8
|
mrcidmd |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑇 ) ) = ( 𝑁 ‘ 𝑇 ) ) |
10 |
6 9
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) ⊆ ( 𝑁 ‘ 𝑇 ) ) |
11 |
1 2 4 7
|
mrcssd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑇 ) ⊆ ( 𝑁 ‘ 𝑆 ) ) |
12 |
10 11
|
eqssd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |