| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mressmrcd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 2 |  | mressmrcd.2 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 3 |  | mressmrcd.3 | ⊢ ( 𝜑  →  𝑆  ⊆  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 4 |  | mressmrcd.4 | ⊢ ( 𝜑  →  𝑇  ⊆  𝑆 ) | 
						
							| 5 | 1 2 | mrcssvd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑇 )  ⊆  𝑋 ) | 
						
							| 6 | 1 2 3 5 | mrcssd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑆 )  ⊆  ( 𝑁 ‘ ( 𝑁 ‘ 𝑇 ) ) ) | 
						
							| 7 | 3 5 | sstrd | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
						
							| 8 | 4 7 | sstrd | ⊢ ( 𝜑  →  𝑇  ⊆  𝑋 ) | 
						
							| 9 | 1 2 8 | mrcidmd | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑁 ‘ 𝑇 ) )  =  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 10 | 6 9 | sseqtrd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑆 )  ⊆  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 11 | 1 2 4 7 | mrcssd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑇 )  ⊆  ( 𝑁 ‘ 𝑆 ) ) | 
						
							| 12 | 10 11 | eqssd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑆 )  =  ( 𝑁 ‘ 𝑇 ) ) |