| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnmre |
⊢ Moore Fn V |
| 2 |
|
fnunirn |
⊢ ( Moore Fn V → ( 𝐶 ∈ ∪ ran Moore ↔ ∃ 𝑥 ∈ V 𝐶 ∈ ( Moore ‘ 𝑥 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 𝐶 ∈ ∪ ran Moore ↔ ∃ 𝑥 ∈ V 𝐶 ∈ ( Moore ‘ 𝑥 ) ) |
| 4 |
|
mreuni |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑥 ) → ∪ 𝐶 = 𝑥 ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑥 ) → ( Moore ‘ ∪ 𝐶 ) = ( Moore ‘ 𝑥 ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑥 ) → ( 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ↔ 𝐶 ∈ ( Moore ‘ 𝑥 ) ) ) |
| 7 |
6
|
ibir |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑥 ) → 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ) |
| 8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ V 𝐶 ∈ ( Moore ‘ 𝑥 ) → 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ) |
| 9 |
3 8
|
sylbi |
⊢ ( 𝐶 ∈ ∪ ran Moore → 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ) |
| 10 |
|
fvssunirn |
⊢ ( Moore ‘ ∪ 𝐶 ) ⊆ ∪ ran Moore |
| 11 |
10
|
sseli |
⊢ ( 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) → 𝐶 ∈ ∪ ran Moore ) |
| 12 |
9 11
|
impbii |
⊢ ( 𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ) |