Step |
Hyp |
Ref |
Expression |
1 |
|
fnmre |
⊢ Moore Fn V |
2 |
|
fnunirn |
⊢ ( Moore Fn V → ( 𝐶 ∈ ∪ ran Moore ↔ ∃ 𝑥 ∈ V 𝐶 ∈ ( Moore ‘ 𝑥 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝐶 ∈ ∪ ran Moore ↔ ∃ 𝑥 ∈ V 𝐶 ∈ ( Moore ‘ 𝑥 ) ) |
4 |
|
mreuni |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑥 ) → ∪ 𝐶 = 𝑥 ) |
5 |
4
|
fveq2d |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑥 ) → ( Moore ‘ ∪ 𝐶 ) = ( Moore ‘ 𝑥 ) ) |
6 |
5
|
eleq2d |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑥 ) → ( 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ↔ 𝐶 ∈ ( Moore ‘ 𝑥 ) ) ) |
7 |
6
|
ibir |
⊢ ( 𝐶 ∈ ( Moore ‘ 𝑥 ) → 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ) |
8 |
7
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ V 𝐶 ∈ ( Moore ‘ 𝑥 ) → 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ) |
9 |
3 8
|
sylbi |
⊢ ( 𝐶 ∈ ∪ ran Moore → 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ) |
10 |
|
fvssunirn |
⊢ ( Moore ‘ ∪ 𝐶 ) ⊆ ∪ ran Moore |
11 |
10
|
sseli |
⊢ ( 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) → 𝐶 ∈ ∪ ran Moore ) |
12 |
9 11
|
impbii |
⊢ ( 𝐶 ∈ ∪ ran Moore ↔ 𝐶 ∈ ( Moore ‘ ∪ 𝐶 ) ) |