Metamath Proof Explorer


Theorem mreuniss

Description: The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Assertion mreuniss ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → 𝑆𝑋 )

Proof

Step Hyp Ref Expression
1 uniss ( 𝑆𝐶 𝑆 𝐶 )
2 1 adantl ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → 𝑆 𝐶 )
3 mreuni ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 = 𝑋 )
4 3 adantr ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → 𝐶 = 𝑋 )
5 2 4 sseqtrd ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐶 ) → 𝑆𝑋 )