| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrieqvd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 2 |  | mrieqvd.2 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 3 |  | mrieqvd.3 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 4 |  | mrieqvd.4 | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
						
							| 5 | 2 3 1 4 | ismri2d | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝐼  ↔  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 6 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 7 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝑆 ) | 
						
							| 9 | 6 2 7 8 | mrieqvlemd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( 𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  ↔  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  =  ( 𝑁 ‘ 𝑆 ) ) ) | 
						
							| 10 | 9 | necon3bbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  ↔  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  ≠  ( 𝑁 ‘ 𝑆 ) ) ) | 
						
							| 11 | 10 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  ↔  ∀ 𝑥  ∈  𝑆 ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  ≠  ( 𝑁 ‘ 𝑆 ) ) ) | 
						
							| 12 | 5 11 | bitrd | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝐼  ↔  ∀ 𝑥  ∈  𝑆 ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  ≠  ( 𝑁 ‘ 𝑆 ) ) ) |