Step |
Hyp |
Ref |
Expression |
1 |
|
mrieqvlemd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mrieqvlemd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mrieqvlemd.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
4 |
|
mrieqvlemd.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
6 |
|
undif1 |
⊢ ( ( 𝑆 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = ( 𝑆 ∪ { 𝑌 } ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑆 ⊆ 𝑋 ) |
8 |
7
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ 𝑋 ) |
9 |
5 2 8
|
mrcssidd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
11 |
10
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → { 𝑌 } ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
12 |
9 11
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( ( 𝑆 ∖ { 𝑌 } ) ∪ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
13 |
6 12
|
eqsstrrid |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∪ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
14 |
13
|
unssad |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑆 ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
15 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ 𝑆 ) |
16 |
5 2 14 15
|
mressmrcd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
17 |
16
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
18 |
1 2 3
|
mrcssidd |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
19 |
18 4
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
22 |
20 21
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
23 |
17 22
|
impbida |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ↔ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) ) |