Metamath Proof Explorer


Theorem mriss

Description: An independent set of a Moore system is a subset of the base set. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis mriss.1 𝐼 = ( mrInd ‘ 𝐴 )
Assertion mriss ( ( 𝐴 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐼 ) → 𝑆𝑋 )

Proof

Step Hyp Ref Expression
1 mriss.1 𝐼 = ( mrInd ‘ 𝐴 )
2 eqid ( mrCls ‘ 𝐴 ) = ( mrCls ‘ 𝐴 )
3 2 1 ismri ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆𝐼 ↔ ( 𝑆𝑋 ∧ ∀ 𝑥𝑆 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝐴 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) )
4 3 simprbda ( ( 𝐴 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆𝐼 ) → 𝑆𝑋 )