Description: An independent set of a Moore system is a subset of the base set. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mriss.1 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
Assertion | mriss | ⊢ ( ( 𝐴 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ⊆ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mriss.1 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
2 | eqid | ⊢ ( mrCls ‘ 𝐴 ) = ( mrCls ‘ 𝐴 ) | |
3 | 2 1 | ismri | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝐴 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
4 | 3 | simprbda | ⊢ ( ( 𝐴 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ⊆ 𝑋 ) |