Metamath Proof Explorer
		
		
		
		Description:  An independent set of a Moore system is a subset of the base set.
       Deduction form.  (Contributed by David Moews, 1-May-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mriss.1 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
					
						|  |  | mrissd.2 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
					
						|  |  | mrissd.3 | ⊢ ( 𝜑  →  𝑆  ∈  𝐼 ) | 
				
					|  | Assertion | mrissd | ⊢  ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mriss.1 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 2 |  | mrissd.2 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 3 |  | mrissd.3 | ⊢ ( 𝜑  →  𝑆  ∈  𝐼 ) | 
						
							| 4 | 1 | mriss | ⊢ ( ( 𝐴  ∈  ( Moore ‘ 𝑋 )  ∧  𝑆  ∈  𝐼 )  →  𝑆  ⊆  𝑋 ) | 
						
							| 5 | 2 3 4 | syl2anc | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) |