Metamath Proof Explorer
Description: An independent set of a Moore system is a subset of the base set.
Deduction form. (Contributed by David Moews, 1-May-2017)
|
|
Ref |
Expression |
|
Hypotheses |
mriss.1 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
|
|
mrissd.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
|
|
mrissd.3 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
|
Assertion |
mrissd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mriss.1 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
2 |
|
mrissd.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
3 |
|
mrissd.3 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
4 |
1
|
mriss |
⊢ ( ( 𝐴 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ⊆ 𝑋 ) |
5 |
2 3 4
|
syl2anc |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |