Metamath Proof Explorer


Theorem mrissmrcd

Description: In a Moore system, if an independent set is between a set and its closure, the two sets are equal (since the two sets must have equal closures by mressmrcd , and so are equal by mrieqv2d .) (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrissmrcd.1 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
mrissmrcd.2 𝑁 = ( mrCls ‘ 𝐴 )
mrissmrcd.3 𝐼 = ( mrInd ‘ 𝐴 )
mrissmrcd.4 ( 𝜑𝑆 ⊆ ( 𝑁𝑇 ) )
mrissmrcd.5 ( 𝜑𝑇𝑆 )
mrissmrcd.6 ( 𝜑𝑆𝐼 )
Assertion mrissmrcd ( 𝜑𝑆 = 𝑇 )

Proof

Step Hyp Ref Expression
1 mrissmrcd.1 ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
2 mrissmrcd.2 𝑁 = ( mrCls ‘ 𝐴 )
3 mrissmrcd.3 𝐼 = ( mrInd ‘ 𝐴 )
4 mrissmrcd.4 ( 𝜑𝑆 ⊆ ( 𝑁𝑇 ) )
5 mrissmrcd.5 ( 𝜑𝑇𝑆 )
6 mrissmrcd.6 ( 𝜑𝑆𝐼 )
7 1 2 4 5 mressmrcd ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
8 pssne ( ( 𝑁𝑇 ) ⊊ ( 𝑁𝑆 ) → ( 𝑁𝑇 ) ≠ ( 𝑁𝑆 ) )
9 8 necomd ( ( 𝑁𝑇 ) ⊊ ( 𝑁𝑆 ) → ( 𝑁𝑆 ) ≠ ( 𝑁𝑇 ) )
10 9 necon2bi ( ( 𝑁𝑆 ) = ( 𝑁𝑇 ) → ¬ ( 𝑁𝑇 ) ⊊ ( 𝑁𝑆 ) )
11 7 10 syl ( 𝜑 → ¬ ( 𝑁𝑇 ) ⊊ ( 𝑁𝑆 ) )
12 3 1 6 mrissd ( 𝜑𝑆𝑋 )
13 1 2 3 12 mrieqv2d ( 𝜑 → ( 𝑆𝐼 ↔ ∀ 𝑠 ( 𝑠𝑆 → ( 𝑁𝑠 ) ⊊ ( 𝑁𝑆 ) ) ) )
14 6 13 mpbid ( 𝜑 → ∀ 𝑠 ( 𝑠𝑆 → ( 𝑁𝑠 ) ⊊ ( 𝑁𝑆 ) ) )
15 6 5 ssexd ( 𝜑𝑇 ∈ V )
16 simpr ( ( 𝜑𝑠 = 𝑇 ) → 𝑠 = 𝑇 )
17 16 psseq1d ( ( 𝜑𝑠 = 𝑇 ) → ( 𝑠𝑆𝑇𝑆 ) )
18 16 fveq2d ( ( 𝜑𝑠 = 𝑇 ) → ( 𝑁𝑠 ) = ( 𝑁𝑇 ) )
19 18 psseq1d ( ( 𝜑𝑠 = 𝑇 ) → ( ( 𝑁𝑠 ) ⊊ ( 𝑁𝑆 ) ↔ ( 𝑁𝑇 ) ⊊ ( 𝑁𝑆 ) ) )
20 17 19 imbi12d ( ( 𝜑𝑠 = 𝑇 ) → ( ( 𝑠𝑆 → ( 𝑁𝑠 ) ⊊ ( 𝑁𝑆 ) ) ↔ ( 𝑇𝑆 → ( 𝑁𝑇 ) ⊊ ( 𝑁𝑆 ) ) ) )
21 15 20 spcdv ( 𝜑 → ( ∀ 𝑠 ( 𝑠𝑆 → ( 𝑁𝑠 ) ⊊ ( 𝑁𝑆 ) ) → ( 𝑇𝑆 → ( 𝑁𝑇 ) ⊊ ( 𝑁𝑆 ) ) ) )
22 14 21 mpd ( 𝜑 → ( 𝑇𝑆 → ( 𝑁𝑇 ) ⊊ ( 𝑁𝑆 ) ) )
23 11 22 mtod ( 𝜑 → ¬ 𝑇𝑆 )
24 sspss ( 𝑇𝑆 ↔ ( 𝑇𝑆𝑇 = 𝑆 ) )
25 5 24 sylib ( 𝜑 → ( 𝑇𝑆𝑇 = 𝑆 ) )
26 25 ord ( 𝜑 → ( ¬ 𝑇𝑆𝑇 = 𝑆 ) )
27 23 26 mpd ( 𝜑𝑇 = 𝑆 )
28 27 eqcomd ( 𝜑𝑆 = 𝑇 )