Step |
Hyp |
Ref |
Expression |
1 |
|
mrissmrcd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mrissmrcd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mrissmrcd.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
4 |
|
mrissmrcd.4 |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑇 ) ) |
5 |
|
mrissmrcd.5 |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
6 |
|
mrissmrcd.6 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
7 |
1 2 4 5
|
mressmrcd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
8 |
|
pssne |
⊢ ( ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) → ( 𝑁 ‘ 𝑇 ) ≠ ( 𝑁 ‘ 𝑆 ) ) |
9 |
8
|
necomd |
⊢ ( ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) → ( 𝑁 ‘ 𝑆 ) ≠ ( 𝑁 ‘ 𝑇 ) ) |
10 |
9
|
necon2bi |
⊢ ( ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) → ¬ ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) |
12 |
3 1 6
|
mrissd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
13 |
1 2 3 12
|
mrieqv2d |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑠 ( 𝑠 ⊊ 𝑆 → ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) ) |
14 |
6 13
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑠 ( 𝑠 ⊊ 𝑆 → ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) |
15 |
6 5
|
ssexd |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → 𝑠 = 𝑇 ) |
17 |
16
|
psseq1d |
⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → ( 𝑠 ⊊ 𝑆 ↔ 𝑇 ⊊ 𝑆 ) ) |
18 |
16
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → ( 𝑁 ‘ 𝑠 ) = ( 𝑁 ‘ 𝑇 ) ) |
19 |
18
|
psseq1d |
⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → ( ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ↔ ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) |
20 |
17 19
|
imbi12d |
⊢ ( ( 𝜑 ∧ 𝑠 = 𝑇 ) → ( ( 𝑠 ⊊ 𝑆 → ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ↔ ( 𝑇 ⊊ 𝑆 → ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) ) |
21 |
15 20
|
spcdv |
⊢ ( 𝜑 → ( ∀ 𝑠 ( 𝑠 ⊊ 𝑆 → ( 𝑁 ‘ 𝑠 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) → ( 𝑇 ⊊ 𝑆 → ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) ) |
22 |
14 21
|
mpd |
⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑆 → ( 𝑁 ‘ 𝑇 ) ⊊ ( 𝑁 ‘ 𝑆 ) ) ) |
23 |
11 22
|
mtod |
⊢ ( 𝜑 → ¬ 𝑇 ⊊ 𝑆 ) |
24 |
|
sspss |
⊢ ( 𝑇 ⊆ 𝑆 ↔ ( 𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆 ) ) |
25 |
5 24
|
sylib |
⊢ ( 𝜑 → ( 𝑇 ⊊ 𝑆 ∨ 𝑇 = 𝑆 ) ) |
26 |
25
|
ord |
⊢ ( 𝜑 → ( ¬ 𝑇 ⊊ 𝑆 → 𝑇 = 𝑆 ) ) |
27 |
23 26
|
mpd |
⊢ ( 𝜑 → 𝑇 = 𝑆 ) |
28 |
27
|
eqcomd |
⊢ ( 𝜑 → 𝑆 = 𝑇 ) |