Step |
Hyp |
Ref |
Expression |
1 |
|
mrissmrid.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
2 |
|
mrissmrid.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
mrissmrid.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
4 |
|
mrissmrid.4 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
5 |
|
mrissmrid.5 |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
6 |
3 1 4
|
mrissd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
7 |
5 6
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
8 |
2 3 1 6
|
ismri2d |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
9 |
4 8
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
10 |
5
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑆 ) ) |
11 |
5
|
ssdifd |
⊢ ( 𝜑 → ( 𝑇 ∖ { 𝑥 } ) ⊆ ( 𝑆 ∖ { 𝑥 } ) ) |
12 |
6
|
ssdifssd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑥 } ) ⊆ 𝑋 ) |
13 |
1 2 11 12
|
mrcssd |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
14 |
13
|
ssneld |
⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) |
15 |
10 14
|
imim12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) → ( 𝑥 ∈ 𝑇 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) ) |
16 |
15
|
ralimdv2 |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) → ∀ 𝑥 ∈ 𝑇 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) ) |
17 |
9 16
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑇 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑇 ∖ { 𝑥 } ) ) ) |
18 |
2 3 1 7 17
|
ismri2dd |
⊢ ( 𝜑 → 𝑇 ∈ 𝐼 ) |