| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrissmrid.1 | ⊢ ( 𝜑  →  𝐴  ∈  ( Moore ‘ 𝑋 ) ) | 
						
							| 2 |  | mrissmrid.2 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 3 |  | mrissmrid.3 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 4 |  | mrissmrid.4 | ⊢ ( 𝜑  →  𝑆  ∈  𝐼 ) | 
						
							| 5 |  | mrissmrid.5 | ⊢ ( 𝜑  →  𝑇  ⊆  𝑆 ) | 
						
							| 6 | 3 1 4 | mrissd | ⊢ ( 𝜑  →  𝑆  ⊆  𝑋 ) | 
						
							| 7 | 5 6 | sstrd | ⊢ ( 𝜑  →  𝑇  ⊆  𝑋 ) | 
						
							| 8 | 2 3 1 6 | ismri2d | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝐼  ↔  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) ) | 
						
							| 9 | 4 8 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) | 
						
							| 10 | 5 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑇  →  𝑥  ∈  𝑆 ) ) | 
						
							| 11 | 5 | ssdifd | ⊢ ( 𝜑  →  ( 𝑇  ∖  { 𝑥 } )  ⊆  ( 𝑆  ∖  { 𝑥 } ) ) | 
						
							| 12 | 6 | ssdifssd | ⊢ ( 𝜑  →  ( 𝑆  ∖  { 𝑥 } )  ⊆  𝑋 ) | 
						
							| 13 | 1 2 11 12 | mrcssd | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝑇  ∖  { 𝑥 } ) )  ⊆  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) ) | 
						
							| 14 | 13 | ssneld | ⊢ ( 𝜑  →  ( ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  →  ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑇  ∖  { 𝑥 } ) ) ) ) | 
						
							| 15 | 10 14 | imim12d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑆  →  ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) ) )  →  ( 𝑥  ∈  𝑇  →  ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑇  ∖  { 𝑥 } ) ) ) ) ) | 
						
							| 16 | 15 | ralimdv2 | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑆 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑆  ∖  { 𝑥 } ) )  →  ∀ 𝑥  ∈  𝑇 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑇  ∖  { 𝑥 } ) ) ) ) | 
						
							| 17 | 9 16 | mpd | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑇 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑇  ∖  { 𝑥 } ) ) ) | 
						
							| 18 | 2 3 1 7 17 | ismri2dd | ⊢ ( 𝜑  →  𝑇  ∈  𝐼 ) |