| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mrisval.1 | ⊢ 𝑁  =  ( mrCls ‘ 𝐴 ) | 
						
							| 2 |  | mrisval.2 | ⊢ 𝐼  =  ( mrInd ‘ 𝐴 ) | 
						
							| 3 |  | fvssunirn | ⊢ ( Moore ‘ 𝑋 )  ⊆  ∪  ran  Moore | 
						
							| 4 | 3 | sseli | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  𝐴  ∈  ∪  ran  Moore ) | 
						
							| 5 |  | unieq | ⊢ ( 𝑐  =  𝐴  →  ∪  𝑐  =  ∪  𝐴 ) | 
						
							| 6 | 5 | pweqd | ⊢ ( 𝑐  =  𝐴  →  𝒫  ∪  𝑐  =  𝒫  ∪  𝐴 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑐  =  𝐴  →  ( mrCls ‘ 𝑐 )  =  ( mrCls ‘ 𝐴 ) ) | 
						
							| 8 | 7 1 | eqtr4di | ⊢ ( 𝑐  =  𝐴  →  ( mrCls ‘ 𝑐 )  =  𝑁 ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( 𝑐  =  𝐴  →  ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠  ∖  { 𝑥 } ) )  =  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑐  =  𝐴  →  ( 𝑥  ∈  ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠  ∖  { 𝑥 } ) )  ↔  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) ) ) | 
						
							| 11 | 10 | notbid | ⊢ ( 𝑐  =  𝐴  →  ( ¬  𝑥  ∈  ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠  ∖  { 𝑥 } ) )  ↔  ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) ) ) | 
						
							| 12 | 11 | ralbidv | ⊢ ( 𝑐  =  𝐴  →  ( ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠  ∖  { 𝑥 } ) )  ↔  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) ) ) | 
						
							| 13 | 6 12 | rabeqbidv | ⊢ ( 𝑐  =  𝐴  →  { 𝑠  ∈  𝒫  ∪  𝑐  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠  ∖  { 𝑥 } ) ) }  =  { 𝑠  ∈  𝒫  ∪  𝐴  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) | 
						
							| 14 |  | df-mri | ⊢ mrInd  =  ( 𝑐  ∈  ∪  ran  Moore  ↦  { 𝑠  ∈  𝒫  ∪  𝑐  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) | 
						
							| 15 |  | vuniex | ⊢ ∪  𝑐  ∈  V | 
						
							| 16 | 15 | pwex | ⊢ 𝒫  ∪  𝑐  ∈  V | 
						
							| 17 | 16 | rabex | ⊢ { 𝑠  ∈  𝒫  ∪  𝑐  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠  ∖  { 𝑥 } ) ) }  ∈  V | 
						
							| 18 | 13 14 17 | fvmpt3i | ⊢ ( 𝐴  ∈  ∪  ran  Moore  →  ( mrInd ‘ 𝐴 )  =  { 𝑠  ∈  𝒫  ∪  𝐴  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  ( mrInd ‘ 𝐴 )  =  { 𝑠  ∈  𝒫  ∪  𝐴  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) | 
						
							| 20 | 2 19 | eqtrid | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  𝐼  =  { 𝑠  ∈  𝒫  ∪  𝐴  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) | 
						
							| 21 |  | mreuni | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  ∪  𝐴  =  𝑋 ) | 
						
							| 22 | 21 | pweqd | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  𝒫  ∪  𝐴  =  𝒫  𝑋 ) | 
						
							| 23 | 22 | rabeqdv | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  { 𝑠  ∈  𝒫  ∪  𝐴  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) }  =  { 𝑠  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) | 
						
							| 24 | 20 23 | eqtrd | ⊢ ( 𝐴  ∈  ( Moore ‘ 𝑋 )  →  𝐼  =  { 𝑠  ∈  𝒫  𝑋  ∣  ∀ 𝑥  ∈  𝑠 ¬  𝑥  ∈  ( 𝑁 ‘ ( 𝑠  ∖  { 𝑥 } ) ) } ) |