Metamath Proof Explorer


Theorem mrisval

Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrisval.1 𝑁 = ( mrCls ‘ 𝐴 )
mrisval.2 𝐼 = ( mrInd ‘ 𝐴 )
Assertion mrisval ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } )

Proof

Step Hyp Ref Expression
1 mrisval.1 𝑁 = ( mrCls ‘ 𝐴 )
2 mrisval.2 𝐼 = ( mrInd ‘ 𝐴 )
3 fvssunirn ( Moore ‘ 𝑋 ) ⊆ ran Moore
4 3 sseli ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐴 ran Moore )
5 unieq ( 𝑐 = 𝐴 𝑐 = 𝐴 )
6 5 pweqd ( 𝑐 = 𝐴 → 𝒫 𝑐 = 𝒫 𝐴 )
7 fveq2 ( 𝑐 = 𝐴 → ( mrCls ‘ 𝑐 ) = ( mrCls ‘ 𝐴 ) )
8 7 1 eqtr4di ( 𝑐 = 𝐴 → ( mrCls ‘ 𝑐 ) = 𝑁 )
9 8 fveq1d ( 𝑐 = 𝐴 → ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) )
10 9 eleq2d ( 𝑐 = 𝐴 → ( 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) )
11 10 notbid ( 𝑐 = 𝐴 → ( ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) )
12 11 ralbidv ( 𝑐 = 𝐴 → ( ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ) )
13 6 12 rabeqbidv ( 𝑐 = 𝐴 → { 𝑠 ∈ 𝒫 𝑐 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } = { 𝑠 ∈ 𝒫 𝐴 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } )
14 df-mri mrInd = ( 𝑐 ran Moore ↦ { 𝑠 ∈ 𝒫 𝑐 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } )
15 vuniex 𝑐 ∈ V
16 15 pwex 𝒫 𝑐 ∈ V
17 16 rabex { 𝑠 ∈ 𝒫 𝑐 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( ( mrCls ‘ 𝑐 ) ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ∈ V
18 13 14 17 fvmpt3i ( 𝐴 ran Moore → ( mrInd ‘ 𝐴 ) = { 𝑠 ∈ 𝒫 𝐴 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } )
19 4 18 syl ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( mrInd ‘ 𝐴 ) = { 𝑠 ∈ 𝒫 𝐴 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } )
20 2 19 eqtrid ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 𝐴 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } )
21 mreuni ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐴 = 𝑋 )
22 21 pweqd ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝒫 𝐴 = 𝒫 𝑋 )
23 22 rabeqdv ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → { 𝑠 ∈ 𝒫 𝐴 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } )
24 20 23 eqtrd ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } )