| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmspropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
| 2 |
|
xmspropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
| 3 |
|
xmspropd.3 |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
| 4 |
|
xmspropd.4 |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) |
| 5 |
1 2 3 4
|
xmspropd |
⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp ) ) |
| 6 |
1
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 7 |
6
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 8 |
3 7
|
eqtr3d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 9 |
2
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
| 10 |
9
|
reseq2d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐿 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 11 |
8 10
|
eqtr3d |
⊢ ( 𝜑 → ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ) |
| 12 |
1 2
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( Met ‘ ( Base ‘ 𝐾 ) ) = ( Met ‘ ( Base ‘ 𝐿 ) ) ) |
| 14 |
11 13
|
eleq12d |
⊢ ( 𝜑 → ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ↔ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐿 ) ) ) ) |
| 15 |
5 14
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐾 ∈ ∞MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) ↔ ( 𝐿 ∈ ∞MetSp ∧ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐿 ) ) ) ) ) |
| 16 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 18 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 19 |
16 17 18
|
isms |
⊢ ( 𝐾 ∈ MetSp ↔ ( 𝐾 ∈ ∞MetSp ∧ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 20 |
|
eqid |
⊢ ( TopOpen ‘ 𝐿 ) = ( TopOpen ‘ 𝐿 ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 22 |
|
eqid |
⊢ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) = ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) |
| 23 |
20 21 22
|
isms |
⊢ ( 𝐿 ∈ MetSp ↔ ( 𝐿 ∈ ∞MetSp ∧ ( ( dist ‘ 𝐿 ) ↾ ( ( Base ‘ 𝐿 ) × ( Base ‘ 𝐿 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐿 ) ) ) ) |
| 24 |
15 19 23
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp ) ) |