Step |
Hyp |
Ref |
Expression |
1 |
|
le2msq |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ) ) |
2 |
|
le2msq |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 · 𝐵 ) ≤ ( 𝐴 · 𝐴 ) ) ) |
3 |
2
|
ancoms |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 · 𝐵 ) ≤ ( 𝐴 · 𝐴 ) ) ) |
4 |
1 3
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ↔ ( ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ∧ ( 𝐵 · 𝐵 ) ≤ ( 𝐴 · 𝐴 ) ) ) ) |
5 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
6 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
7 |
5 6
|
letri3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
8 |
5 5
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
9 |
6 6
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( 𝐵 · 𝐵 ) ∈ ℝ ) |
10 |
8 9
|
letri3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ↔ ( ( 𝐴 · 𝐴 ) ≤ ( 𝐵 · 𝐵 ) ∧ ( 𝐵 · 𝐵 ) ≤ ( 𝐴 · 𝐴 ) ) ) ) |
11 |
4 7 10
|
3bitr4rd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 · 𝐴 ) = ( 𝐵 · 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |