Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
⊢ ( ( 𝐴 = 0 ∧ 𝐴 = 0 ) → ( 𝐴 · 𝐴 ) = ( 0 · 0 ) ) |
2 |
1
|
anidms |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐴 ) = ( 0 · 0 ) ) |
3 |
|
0cn |
⊢ 0 ∈ ℂ |
4 |
3
|
mul01i |
⊢ ( 0 · 0 ) = 0 |
5 |
2 4
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐴 ) = 0 ) |
6 |
5
|
breq2d |
⊢ ( 𝐴 = 0 → ( 0 ≤ ( 𝐴 · 𝐴 ) ↔ 0 ≤ 0 ) ) |
7 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 ∈ ℝ ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
9 |
8 8
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
10 |
|
msqgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |
11 |
7 9 10
|
ltled |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 ≤ ( 𝐴 · 𝐴 ) ) |
12 |
|
0re |
⊢ 0 ∈ ℝ |
13 |
|
leid |
⊢ ( 0 ∈ ℝ → 0 ≤ 0 ) |
14 |
12 13
|
mp1i |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ 0 ) |
15 |
6 11 14
|
pm2.61ne |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 · 𝐴 ) ) |