| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq12 |
⊢ ( ( 𝐴 = 0 ∧ 𝐴 = 0 ) → ( 𝐴 · 𝐴 ) = ( 0 · 0 ) ) |
| 2 |
1
|
anidms |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐴 ) = ( 0 · 0 ) ) |
| 3 |
|
0cn |
⊢ 0 ∈ ℂ |
| 4 |
3
|
mul01i |
⊢ ( 0 · 0 ) = 0 |
| 5 |
2 4
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐴 ) = 0 ) |
| 6 |
5
|
breq2d |
⊢ ( 𝐴 = 0 → ( 0 ≤ ( 𝐴 · 𝐴 ) ↔ 0 ≤ 0 ) ) |
| 7 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 ∈ ℝ ) |
| 8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
| 9 |
8 8
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 𝐴 ) ∈ ℝ ) |
| 10 |
|
msqgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |
| 11 |
7 9 10
|
ltled |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 ≤ ( 𝐴 · 𝐴 ) ) |
| 12 |
|
0re |
⊢ 0 ∈ ℝ |
| 13 |
|
leid |
⊢ ( 0 ∈ ℝ → 0 ≤ 0 ) |
| 14 |
12 13
|
mp1i |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ 0 ) |
| 15 |
6 11 14
|
pm2.61ne |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 · 𝐴 ) ) |