Metamath Proof Explorer


Theorem msqge0d

Description: A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis leidd.1 ( 𝜑𝐴 ∈ ℝ )
Assertion msqge0d ( 𝜑 → 0 ≤ ( 𝐴 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 msqge0 ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 · 𝐴 ) )
3 1 2 syl ( 𝜑 → 0 ≤ ( 𝐴 · 𝐴 ) )