Metamath Proof Explorer


Theorem msqgt0i

Description: A nonzero square is positive. Theorem I.20 of Apostol p. 20. (Contributed by NM, 17-Jan-1997) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis lt2.1 𝐴 ∈ ℝ
Assertion msqgt0i ( 𝐴 ≠ 0 → 0 < ( 𝐴 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 msqgt0 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) )
3 1 2 mpan ( 𝐴 ≠ 0 → 0 < ( 𝐴 · 𝐴 ) )