Metamath Proof Explorer
Description: A nonzero square is positive. Theorem I.20 of Apostol p. 20.
(Contributed by NM, 17-Jan-1997) (Revised by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypothesis |
lt2.1 |
⊢ 𝐴 ∈ ℝ |
|
Assertion |
msqgt0i |
⊢ ( 𝐴 ≠ 0 → 0 < ( 𝐴 · 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lt2.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
msqgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ≠ 0 → 0 < ( 𝐴 · 𝐴 ) ) |