Metamath Proof Explorer


Theorem msqsqrtd

Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 ( 𝜑𝐴 ∈ ℂ )
Assertion msqsqrtd ( 𝜑 → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 abscld.1 ( 𝜑𝐴 ∈ ℂ )
2 1 sqrtcld ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℂ )
3 2 sqvald ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) )
4 1 sqsqrtd ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 )
5 3 4 eqtr3d ( 𝜑 → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 )