Description: Square root theorem. Theorem I.35 of Apostol p. 29. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
Assertion | msqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | 1 | sqrtcld | ⊢ ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℂ ) |
3 | 2 | sqvald | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) ) |
4 | 1 | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
5 | 3 4 | eqtr3d | ⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) · ( √ ‘ 𝐴 ) ) = 𝐴 ) |