Metamath Proof Explorer


Theorem msqznn

Description: The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004)

Ref Expression
Assertion msqznn ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 𝐴 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 zmulcl ( ( 𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 · 𝐴 ) ∈ ℤ )
2 1 anidms ( 𝐴 ∈ ℤ → ( 𝐴 · 𝐴 ) ∈ ℤ )
3 2 adantr ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 𝐴 ) ∈ ℤ )
4 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
5 msqgt0 ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) )
6 4 5 sylan ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) )
7 elnnz ( ( 𝐴 · 𝐴 ) ∈ ℕ ↔ ( ( 𝐴 · 𝐴 ) ∈ ℤ ∧ 0 < ( 𝐴 · 𝐴 ) ) )
8 3 6 7 sylanbrc ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · 𝐴 ) ∈ ℕ )