Metamath Proof Explorer


Theorem mt2bi

Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993) (Proof shortened by Wolf Lammen, 12-Nov-2012)

Ref Expression
Hypothesis mt2bi.1 𝜑
Assertion mt2bi ( ¬ 𝜓 ↔ ( 𝜓 → ¬ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 mt2bi.1 𝜑
2 1 a1bi ( ¬ 𝜓 ↔ ( 𝜑 → ¬ 𝜓 ) )
3 con2b ( ( 𝜑 → ¬ 𝜓 ) ↔ ( 𝜓 → ¬ 𝜑 ) )
4 2 3 bitri ( ¬ 𝜓 ↔ ( 𝜓 → ¬ 𝜑 ) )