Description: A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993) (Proof shortened by Wolf Lammen, 12-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mt2bi.1 | ⊢ 𝜑 | |
Assertion | mt2bi | ⊢ ( ¬ 𝜓 ↔ ( 𝜓 → ¬ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2bi.1 | ⊢ 𝜑 | |
2 | 1 | a1bi | ⊢ ( ¬ 𝜓 ↔ ( 𝜑 → ¬ 𝜓 ) ) |
3 | con2b | ⊢ ( ( 𝜑 → ¬ 𝜓 ) ↔ ( 𝜓 → ¬ 𝜑 ) ) | |
4 | 2 3 | bitri | ⊢ ( ¬ 𝜓 ↔ ( 𝜓 → ¬ 𝜑 ) ) |