Metamath Proof Explorer


Theorem mt4d

Description: Modus tollens deduction. Deduction form of mt4 . (Contributed by NM, 9-Jun-2006)

Ref Expression
Hypotheses mt4d.1 ( 𝜑𝜓 )
mt4d.2 ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜓 ) )
Assertion mt4d ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 mt4d.1 ( 𝜑𝜓 )
2 mt4d.2 ( 𝜑 → ( ¬ 𝜒 → ¬ 𝜓 ) )
3 2 con4d ( 𝜑 → ( 𝜓𝜒 ) )
4 1 3 mpd ( 𝜑𝜒 )