Metamath Proof Explorer


Theorem mtbii

Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995)

Ref Expression
Hypotheses mtbii.min ¬ 𝜓
mtbii.maj ( 𝜑 → ( 𝜓𝜒 ) )
Assertion mtbii ( 𝜑 → ¬ 𝜒 )

Proof

Step Hyp Ref Expression
1 mtbii.min ¬ 𝜓
2 mtbii.maj ( 𝜑 → ( 𝜓𝜒 ) )
3 2 biimprd ( 𝜑 → ( 𝜒𝜓 ) )
4 1 3 mtoi ( 𝜑 → ¬ 𝜒 )