Metamath Proof Explorer


Theorem mteqand

Description: A modus tollens deduction for inequality. (Contributed by Steven Nguyen, 1-Jun-2023)

Ref Expression
Hypotheses mteqand.1 ( 𝜑𝐶𝐷 )
mteqand.2 ( ( 𝜑𝐴 = 𝐵 ) → 𝐶 = 𝐷 )
Assertion mteqand ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 mteqand.1 ( 𝜑𝐶𝐷 )
2 mteqand.2 ( ( 𝜑𝐴 = 𝐵 ) → 𝐶 = 𝐷 )
3 1 neneqd ( 𝜑 → ¬ 𝐶 = 𝐷 )
4 3 2 mtand ( 𝜑 → ¬ 𝐴 = 𝐵 )
5 4 neqned ( 𝜑𝐴𝐵 )