Step |
Hyp |
Ref |
Expression |
1 |
|
mtest.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
2 |
|
mtest.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
3 |
|
mtest.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
mtest.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
5 |
|
mtest.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
6 |
|
mtest.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
7 |
|
mtest.l |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
8 |
|
mtest.d |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ) |
9 |
1
|
climcau |
⊢ ( ( 𝑁 ∈ ℤ ∧ seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 ) |
10 |
2 8 9
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 ) |
11 |
|
seqfn |
⊢ ( 𝑁 ∈ ℤ → seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
13 |
1
|
fneq2i |
⊢ ( seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ↔ seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
14 |
12 13
|
sylibr |
⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ) |
15 |
3
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑆 ∈ V ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
18 |
17 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
20 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑖 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
21 |
20 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑖 ) → 𝑘 ∈ 𝑍 ) |
22 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
23 |
19 21 22
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
24 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
26 |
25
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
27 |
21
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
28 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
30 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) |
31 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ V |
32 |
29 30 31
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
33 |
27 32
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
34 |
33
|
mpteq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
35 |
26 34
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) |
36 |
16 18 35
|
seqof |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑁 ∈ ℤ ) |
38 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) ) |
39 |
|
elmapi |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
40 |
38 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
41 |
40
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ∈ ℂ ) |
42 |
41
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ∈ ℂ ) |
43 |
42
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) : 𝑍 ⟶ ℂ ) |
44 |
43
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑖 ) ∈ ℂ ) |
45 |
1 37 44
|
serf |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) : 𝑍 ⟶ ℂ ) |
46 |
45
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑖 ∈ 𝑍 ) → ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
47 |
46
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
48 |
47
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) |
49 |
|
cnex |
⊢ ℂ ∈ V |
50 |
|
elmapg |
⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ V ) → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) |
51 |
49 16 50
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ↔ ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) : 𝑆 ⟶ ℂ ) ) |
52 |
48 51
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ∈ ( ℂ ↑m 𝑆 ) ) |
53 |
36 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) ) |
54 |
53
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑍 ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) ) |
55 |
|
ffnfv |
⊢ ( seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ↔ ( seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ∧ ∀ 𝑖 ∈ 𝑍 ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) ) ) |
56 |
14 54 55
|
sylanbrc |
⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
58 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑖 ∈ 𝑍 ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑖 ∈ 𝑍 ) |
60 |
57 59
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) ) |
61 |
|
elmapi |
⊢ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ∈ ( ℂ ↑m 𝑆 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) : 𝑆 ⟶ ℂ ) |
62 |
60 61
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) : 𝑆 ⟶ ℂ ) |
63 |
62
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) ∈ ℂ ) |
64 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ 𝑍 ) |
65 |
57 64
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
66 |
|
elmapi |
⊢ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
67 |
65 66
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
68 |
67
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
69 |
63 68
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ∈ ℂ ) |
70 |
69
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ∈ ℝ ) |
71 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑗 + 1 ) ... 𝑖 ) ∈ Fin ) |
72 |
|
ssun2 |
⊢ ( ( 𝑗 + 1 ) ... 𝑖 ) ⊆ ( ( 𝑁 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑖 ) ) |
73 |
64 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
74 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
75 |
|
elfzuzb |
⊢ ( 𝑗 ∈ ( 𝑁 ... 𝑖 ) ↔ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
76 |
73 74 75
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ( 𝑁 ... 𝑖 ) ) |
77 |
|
fzsplit |
⊢ ( 𝑗 ∈ ( 𝑁 ... 𝑖 ) → ( 𝑁 ... 𝑖 ) = ( ( 𝑁 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑖 ) ) ) |
78 |
76 77
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑁 ... 𝑖 ) = ( ( 𝑁 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑖 ) ) ) |
79 |
72 78
|
sseqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑗 + 1 ) ... 𝑖 ) ⊆ ( 𝑁 ... 𝑖 ) ) |
80 |
79
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) |
81 |
80
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) |
82 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
83 |
82 21 22
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
84 |
83 24
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
85 |
84
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
86 |
85
|
an32s |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
87 |
81 86
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
88 |
87
|
abscld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
89 |
71 88
|
fsumrecl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
90 |
1 2 6
|
serfre |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) : 𝑍 ⟶ ℝ ) |
91 |
90
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → seq 𝑁 ( + , 𝑀 ) : 𝑍 ⟶ ℝ ) |
92 |
91 59
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) ∈ ℝ ) |
93 |
91 64
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ∈ ℝ ) |
94 |
92 93
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ∈ ℝ ) |
95 |
94
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ∈ ℂ ) |
96 |
95
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
97 |
96
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∈ ℝ ) |
98 |
58 36
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
99 |
98
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
100 |
99
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ‘ 𝑧 ) ) |
101 |
|
fvex |
⊢ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ∈ V |
102 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
103 |
102
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝑆 ∧ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ∈ V ) → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
104 |
101 103
|
mpan2 |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
105 |
100 104
|
sylan9eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
106 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ) |
107 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
108 |
107
|
mpteq2dv |
⊢ ( 𝑖 = 𝑗 → ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) |
109 |
106 108
|
eqeq12d |
⊢ ( 𝑖 = 𝑗 → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ↔ ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) ) |
110 |
36
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑍 ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
111 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ∀ 𝑖 ∈ 𝑍 ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) ) |
112 |
109 111 64
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) |
113 |
112
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ‘ 𝑧 ) ) |
114 |
|
fvex |
⊢ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ∈ V |
115 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
116 |
115
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝑆 ∧ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ∈ V ) → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
117 |
114 116
|
mpan2 |
⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
118 |
113 117
|
sylan9eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
119 |
105 118
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) = ( ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) − ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) |
120 |
21
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
121 |
120 32
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
122 |
59
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑖 ∈ 𝑍 ) |
123 |
122 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
124 |
121 123 86
|
fsumser |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) ) |
125 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
126 |
125 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
127 |
126
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
128 |
127 32
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
129 |
64
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑗 ∈ 𝑍 ) |
130 |
129 1
|
eleqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
131 |
82 126 22
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
132 |
131 24
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
133 |
132
|
ffvelrnda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
134 |
133
|
an32s |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
135 |
128 130 134
|
fsumser |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) |
136 |
124 135
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = ( ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑖 ) − ( seq 𝑁 ( + , ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) ) ‘ 𝑗 ) ) ) |
137 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑗 ) ∈ Fin ) |
138 |
137 134
|
fsumcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
139 |
71 87
|
fsumcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
140 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑗 ∈ ℝ ) |
141 |
73 140
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 ∈ ℝ ) |
142 |
141
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑗 < ( 𝑗 + 1 ) ) |
143 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 𝑁 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑖 ) ) = ∅ ) |
144 |
142 143
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑁 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑖 ) ) = ∅ ) |
145 |
144
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑁 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑖 ) ) = ∅ ) |
146 |
78
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑖 ) = ( ( 𝑁 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑖 ) ) ) |
147 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑖 ) ∈ Fin ) |
148 |
145 146 147 86
|
fsumsplit |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) + Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
149 |
138 139 148
|
mvrladdd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
150 |
119 136 149
|
3eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
151 |
150
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
152 |
71 87
|
fsumabs |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
153 |
151 152
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ≤ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
154 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝜑 ) |
155 |
154 21 6
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
156 |
80 155
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
157 |
156
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
158 |
81 21
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 𝑘 ∈ 𝑍 ) |
159 |
7
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
160 |
159
|
anass1rs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
161 |
158 160
|
syldan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
162 |
71 88 157 161
|
fsumle |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
163 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) = ( 𝑀 ‘ 𝑘 ) ) |
164 |
59 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
165 |
155
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
166 |
163 164 165
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) = ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) ) |
167 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝑀 ‘ 𝑘 ) = ( 𝑀 ‘ 𝑘 ) ) |
168 |
154 126 6
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
169 |
168
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
170 |
167 73 169
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) = ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) |
171 |
166 170
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) ) = ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) |
172 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑁 ... 𝑗 ) ∈ Fin ) |
173 |
172 169
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
174 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑗 + 1 ) ... 𝑖 ) ∈ Fin ) |
175 |
80 165
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
176 |
174 175
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
177 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑁 ... 𝑖 ) ∈ Fin ) |
178 |
144 78 177 165
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) ) |
179 |
173 176 178
|
mvrladdd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( Σ 𝑘 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) − Σ 𝑘 ∈ ( 𝑁 ... 𝑗 ) ( 𝑀 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
180 |
171 179
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
181 |
180
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) ) |
182 |
181
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) ) |
183 |
180 94
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
184 |
183
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
185 |
|
0red |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 0 ∈ ℝ ) |
186 |
87
|
absge0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
187 |
185 88 157 186 161
|
letrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ) → 0 ≤ ( 𝑀 ‘ 𝑘 ) ) |
188 |
71 157 187
|
fsumge0 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 0 ≤ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
189 |
184 188
|
absidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
190 |
182 189
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) = Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( 𝑀 ‘ 𝑘 ) ) |
191 |
162 190
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( ( 𝑗 + 1 ) ... 𝑖 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ) |
192 |
70 89 97 153 191
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ) |
193 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑟 ∈ ℝ+ ) |
194 |
193
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑟 ∈ ℝ ) |
195 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∧ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
196 |
70 97 194 195
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) ≤ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) ∧ ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 ) → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
197 |
192 196
|
mpand |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
198 |
197
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
199 |
198
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
200 |
199
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
201 |
200
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
202 |
201
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑖 ) − ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑗 ) ) ) < 𝑟 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
203 |
10 202
|
mpd |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) |
204 |
1 2 3 56
|
ulmcau |
⊢ ( 𝜑 → ( seq 𝑁 ( ∘f + , 𝐹 ) ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑖 ) ‘ 𝑧 ) − ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑟 ) ) |
205 |
203 204
|
mpbird |
⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |