Metamath Proof Explorer
Description: A modus tollens deduction involving disjunction. (Contributed by Jeff
Hankins, 15-Jul-2009)
|
|
Ref |
Expression |
|
Hypotheses |
mtord.1 |
⊢ ( 𝜑 → ¬ 𝜒 ) |
|
|
mtord.2 |
⊢ ( 𝜑 → ¬ 𝜃 ) |
|
|
mtord.3 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∨ 𝜃 ) ) ) |
|
Assertion |
mtord |
⊢ ( 𝜑 → ¬ 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mtord.1 |
⊢ ( 𝜑 → ¬ 𝜒 ) |
2 |
|
mtord.2 |
⊢ ( 𝜑 → ¬ 𝜃 ) |
3 |
|
mtord.3 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ∨ 𝜃 ) ) ) |
4 |
|
pm2.53 |
⊢ ( ( 𝜒 ∨ 𝜃 ) → ( ¬ 𝜒 → 𝜃 ) ) |
5 |
3 1 4
|
syl6ci |
⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
6 |
2 5
|
mtod |
⊢ ( 𝜑 → ¬ 𝜓 ) |