Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
2 |
|
reex |
⊢ ℝ ∈ V |
3 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
4 |
2 3
|
ssexi |
⊢ ℝ+ ∈ V |
5 |
4
|
a1i |
⊢ ( ⊤ → ℝ+ ∈ V ) |
6 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
7 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
8 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
9 |
|
nndivre |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
10 |
7 8 9
|
syl2an |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℂ ) |
12 |
|
reflcl |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
13 |
10 12
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
15 |
11 14
|
subcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
16 |
8
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
17 |
|
mucl |
⊢ ( 𝑛 ∈ ℕ → ( μ ‘ 𝑛 ) ∈ ℤ ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
19 |
18
|
zcnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
20 |
15 19
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ∈ ℂ ) |
21 |
6 20
|
fsumcl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ∈ ℂ ) |
22 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
23 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
24 |
21 22 23
|
divcld |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ∈ ℂ ) |
25 |
24
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ∈ ℂ ) |
26 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ V ) |
27 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) ) |
28 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
29 |
5 25 26 27 28
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) ) |
30 |
3
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
31 |
21
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ∈ ℂ ) |
32 |
22
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 𝑥 ∈ ℂ ) |
33 |
23
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 𝑥 ≠ 0 ) |
34 |
31 32 33
|
absdivd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) / ( abs ‘ 𝑥 ) ) ) |
35 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
36 |
|
absid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
37 |
35 36
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ 𝑥 ) = 𝑥 ) |
38 |
37
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ 𝑥 ) = 𝑥 ) |
39 |
38
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) / ( abs ‘ 𝑥 ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) / 𝑥 ) ) |
40 |
34 39
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) = ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) / 𝑥 ) ) |
41 |
31
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ∈ ℝ ) |
42 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
43 |
20
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ∈ ℂ ) |
44 |
43
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ∈ ℝ ) |
45 |
42 44
|
fsumrecl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ∈ ℝ ) |
46 |
7
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
47 |
42 43
|
fsumabs |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ) |
48 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
49 |
46 48
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
50 |
|
1red |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
51 |
15
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
52 |
|
fz1ssnn |
⊢ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ℕ |
53 |
52
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ℕ ) |
54 |
53
|
sselda |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
55 |
54 17
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
56 |
55
|
zcnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
57 |
51 56
|
absmuld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) = ( ( abs ‘ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) · ( abs ‘ ( μ ‘ 𝑛 ) ) ) ) |
58 |
51
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
59 |
56
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑛 ) ) ∈ ℝ ) |
60 |
51
|
absge0d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
61 |
56
|
absge0d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( μ ‘ 𝑛 ) ) ) |
62 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 𝑥 ∈ ℝ+ ) |
63 |
8
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
64 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
65 |
62 63 64
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
66 |
3 65
|
sselid |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
67 |
66 12
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
68 |
|
flle |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ≤ ( 𝑥 / 𝑛 ) ) |
69 |
66 68
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ≤ ( 𝑥 / 𝑛 ) ) |
70 |
67 66 69
|
abssubge0d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) |
71 |
|
fracle1 |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ → ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ≤ 1 ) |
72 |
66 71
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ≤ 1 ) |
73 |
70 72
|
eqbrtrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) ≤ 1 ) |
74 |
|
mule1 |
⊢ ( 𝑛 ∈ ℕ → ( abs ‘ ( μ ‘ 𝑛 ) ) ≤ 1 ) |
75 |
54 74
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑛 ) ) ≤ 1 ) |
76 |
58 50 59 50 60 61 73 75
|
lemul12ad |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) · ( abs ‘ ( μ ‘ 𝑛 ) ) ) ≤ ( 1 · 1 ) ) |
77 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
78 |
76 77
|
breqtrdi |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) · ( abs ‘ ( μ ‘ 𝑛 ) ) ) ≤ 1 ) |
79 |
57 78
|
eqbrtrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ≤ 1 ) |
80 |
42 44 50 79
|
fsumle |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 1 ) |
81 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 1 ∈ ℂ ) |
82 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 1 = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · 1 ) ) |
83 |
42 81 82
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 1 = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · 1 ) ) |
84 |
|
flge1nn |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
85 |
7 84
|
sylan |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
86 |
85
|
nnnn0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
87 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
88 |
86 87
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
89 |
88
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · 1 ) = ( ( ⌊ ‘ 𝑥 ) · 1 ) ) |
90 |
49
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℂ ) |
91 |
90
|
mulid1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ( ⌊ ‘ 𝑥 ) · 1 ) = ( ⌊ ‘ 𝑥 ) ) |
92 |
83 89 91
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) 1 = ( ⌊ ‘ 𝑥 ) ) |
93 |
80 92
|
breqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ≤ ( ⌊ ‘ 𝑥 ) ) |
94 |
|
flle |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
95 |
46 94
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
96 |
45 49 46 93 95
|
letrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ≤ 𝑥 ) |
97 |
41 45 46 47 96
|
letrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ≤ 𝑥 ) |
98 |
32
|
mulid1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 𝑥 · 1 ) = 𝑥 ) |
99 |
97 98
|
breqtrrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ≤ ( 𝑥 · 1 ) ) |
100 |
|
1red |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 1 ∈ ℝ ) |
101 |
41 100 62
|
ledivmuld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) / 𝑥 ) ≤ 1 ↔ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) ≤ ( 𝑥 · 1 ) ) ) |
102 |
99 101
|
mpbird |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ) / 𝑥 ) ≤ 1 ) |
103 |
40 102
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) ≤ 1 ) |
104 |
103
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) ≤ 1 ) |
105 |
30 25 1 1 104
|
elo1d |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) ∈ 𝑂(1) ) |
106 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
107 |
|
divrcnv |
⊢ ( 1 ∈ ℂ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ⇝𝑟 0 ) |
108 |
106 107
|
ax-mp |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ⇝𝑟 0 |
109 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ⇝𝑟 0 → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ∈ 𝑂(1) ) |
110 |
108 109
|
mp1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ∈ 𝑂(1) ) |
111 |
|
o1add |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) ∈ 𝑂(1) ) |
112 |
105 110 111
|
syl2anc |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) ∈ 𝑂(1) ) |
113 |
29 112
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) ∈ 𝑂(1) ) |
114 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ∈ V ) |
115 |
18
|
zred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ ) |
116 |
115 16
|
nndivred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
117 |
116
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
118 |
6 117
|
fsumcl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
119 |
118
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
120 |
118
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
121 |
120
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
122 |
117
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
123 |
42 32 122
|
fsummulc2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥 · ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ) |
124 |
14 19
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ∈ ℂ ) |
125 |
124
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ∈ ℂ ) |
126 |
42 43 125
|
fsumadd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) ) |
127 |
11
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℂ ) |
128 |
14
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
129 |
127 128
|
npcand |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) = ( 𝑥 / 𝑛 ) ) |
130 |
129
|
oveq1d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) = ( ( 𝑥 / 𝑛 ) · ( μ ‘ 𝑛 ) ) ) |
131 |
51 128 56
|
adddird |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) + ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) = ( ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) ) |
132 |
32
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℂ ) |
133 |
54
|
nnrpd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
134 |
|
rpcnne0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
135 |
133 134
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
136 |
|
div23 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( μ ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑥 · ( μ ‘ 𝑛 ) ) / 𝑛 ) = ( ( 𝑥 / 𝑛 ) · ( μ ‘ 𝑛 ) ) ) |
137 |
|
divass |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( μ ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑥 · ( μ ‘ 𝑛 ) ) / 𝑛 ) = ( 𝑥 · ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ) |
138 |
136 137
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( μ ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑥 / 𝑛 ) · ( μ ‘ 𝑛 ) ) = ( 𝑥 · ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ) |
139 |
132 56 135 138
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 / 𝑛 ) · ( μ ‘ 𝑛 ) ) = ( 𝑥 · ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ) |
140 |
130 131 139
|
3eqtr3d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) = ( 𝑥 · ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ) |
141 |
140
|
sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥 · ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ) |
142 |
|
eqidd |
⊢ ( 𝑘 = ( 𝑛 · 𝑚 ) → ( μ ‘ 𝑛 ) = ( μ ‘ 𝑛 ) ) |
143 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ⊆ ℕ |
144 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) |
145 |
143 144
|
sselid |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → 𝑛 ∈ ℕ ) |
146 |
145 17
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
147 |
146
|
zcnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
148 |
142 46 147
|
dvdsflsumcom |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ( μ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( μ ‘ 𝑛 ) ) |
149 |
147
|
3impb |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
150 |
149
|
mulid1d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) → ( ( μ ‘ 𝑛 ) · 1 ) = ( μ ‘ 𝑛 ) ) |
151 |
150
|
2sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ( ( μ ‘ 𝑛 ) · 1 ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ( μ ‘ 𝑛 ) ) |
152 |
|
eqidd |
⊢ ( 𝑘 = 1 → 1 = 1 ) |
153 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
154 |
85 153
|
eleqtrdi |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) ) |
155 |
|
eluzfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
156 |
154 155
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 1 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
157 |
|
1cnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℂ ) |
158 |
152 42 53 156 157
|
musumsum |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ( ( μ ‘ 𝑛 ) · 1 ) = 1 ) |
159 |
151 158
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ( μ ‘ 𝑛 ) = 1 ) |
160 |
|
fzfid |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ) |
161 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ∧ ( μ ‘ 𝑛 ) ∈ ℂ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( μ ‘ 𝑛 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) · ( μ ‘ 𝑛 ) ) ) |
162 |
160 56 161
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( μ ‘ 𝑛 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) · ( μ ‘ 𝑛 ) ) ) |
163 |
|
rprege0 |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ+ → ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 / 𝑛 ) ) ) |
164 |
|
flge0nn0 |
⊢ ( ( ( 𝑥 / 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 / 𝑛 ) ) → ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℕ0 ) |
165 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) |
166 |
65 163 164 165
|
4syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) |
167 |
166
|
oveq1d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) · ( μ ‘ 𝑛 ) ) = ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) |
168 |
162 167
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( μ ‘ 𝑛 ) = ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) |
169 |
168
|
sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( μ ‘ 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) |
170 |
148 159 169
|
3eqtr3rd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) = 1 ) |
171 |
170
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) · ( μ ‘ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + 1 ) ) |
172 |
126 141 171
|
3eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝑥 · ( ( μ ‘ 𝑛 ) / 𝑛 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + 1 ) ) |
173 |
123 172
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + 1 ) ) |
174 |
173
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + 1 ) / 𝑥 ) ) |
175 |
120 32 33
|
divcan3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ( 𝑥 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) |
176 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
177 |
176
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
178 |
|
divdir |
⊢ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + 1 ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) |
179 |
31 81 177 178
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) + 1 ) / 𝑥 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) |
180 |
174 175 179
|
3eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) |
181 |
180
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) = ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) ) |
182 |
121 181
|
eqled |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) ) |
183 |
182
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑥 / 𝑛 ) − ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) · ( μ ‘ 𝑛 ) ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) ) |
184 |
1 113 114 119 183
|
o1le |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) ) |
185 |
184
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) |