Step |
Hyp |
Ref |
Expression |
1 |
|
df-mu |
⊢ μ = ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ) |
2 |
|
0z |
⊢ 0 ∈ ℤ |
3 |
|
neg1z |
⊢ - 1 ∈ ℤ |
4 |
|
prmdvdsfi |
⊢ ( 𝑥 ∈ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ∈ Fin ) |
5 |
|
hashcl |
⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ∈ ℕ0 ) |
6 |
4 5
|
syl |
⊢ ( 𝑥 ∈ ℕ → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ∈ ℕ0 ) |
7 |
|
zexpcl |
⊢ ( ( - 1 ∈ ℤ ∧ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ∈ ℕ0 ) → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ∈ ℤ ) |
8 |
3 6 7
|
sylancr |
⊢ ( 𝑥 ∈ ℕ → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ∈ ℤ ) |
9 |
|
ifcl |
⊢ ( ( 0 ∈ ℤ ∧ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ∈ ℤ ) → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ∈ ℤ ) |
10 |
2 8 9
|
sylancr |
⊢ ( 𝑥 ∈ ℕ → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ∈ ℤ ) |
11 |
1 10
|
fmpti |
⊢ μ : ℕ ⟶ ℤ |