Metamath Proof Explorer


Theorem mul01

Description: Multiplication by 0 . Theorem I.6 of Apostol p. 18. (Contributed by NM, 15-May-1999) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion mul01 ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 0cn 0 ∈ ℂ
2 mulcom ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝐴 · 0 ) = ( 0 · 𝐴 ) )
3 1 2 mpan2 ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = ( 0 · 𝐴 ) )
4 mul02 ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 )
5 3 4 eqtrd ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 )