Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
2 |
|
0cn |
⊢ 0 ∈ ℂ |
3 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
4 |
|
ax-icn |
⊢ i ∈ ℂ |
5 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
6 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) ∈ ℂ ) |
7 |
4 5 6
|
sylancr |
⊢ ( 𝑦 ∈ ℝ → ( i · 𝑦 ) ∈ ℂ ) |
8 |
|
adddi |
⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( i · 𝑦 ) ∈ ℂ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) ) |
9 |
2 3 7 8
|
mp3an3an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) ) |
10 |
|
mul02lem2 |
⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) |
11 |
|
mul12 |
⊢ ( ( 0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 · ( i · 𝑦 ) ) = ( i · ( 0 · 𝑦 ) ) ) |
12 |
2 4 5 11
|
mp3an12i |
⊢ ( 𝑦 ∈ ℝ → ( 0 · ( i · 𝑦 ) ) = ( i · ( 0 · 𝑦 ) ) ) |
13 |
|
mul02lem2 |
⊢ ( 𝑦 ∈ ℝ → ( 0 · 𝑦 ) = 0 ) |
14 |
13
|
oveq2d |
⊢ ( 𝑦 ∈ ℝ → ( i · ( 0 · 𝑦 ) ) = ( i · 0 ) ) |
15 |
12 14
|
eqtrd |
⊢ ( 𝑦 ∈ ℝ → ( 0 · ( i · 𝑦 ) ) = ( i · 0 ) ) |
16 |
10 15
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 0 · 𝑥 ) + ( 0 · ( i · 𝑦 ) ) ) = ( 0 + ( i · 0 ) ) ) |
17 |
9 16
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( 0 + ( i · 0 ) ) ) |
18 |
|
cnre |
⊢ ( 0 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 0 = ( 𝑥 + ( i · 𝑦 ) ) ) |
19 |
2 18
|
ax-mp |
⊢ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 0 = ( 𝑥 + ( i · 𝑦 ) ) |
20 |
|
oveq2 |
⊢ ( 0 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 0 ) = ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) ) |
21 |
20
|
eqeq1d |
⊢ ( 0 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 0 · 0 ) = ( 0 + ( i · 0 ) ) ↔ ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = ( 0 + ( i · 0 ) ) ) ) |
22 |
17 21
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 0 ) = ( 0 + ( i · 0 ) ) ) ) |
23 |
22
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 0 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 0 ) = ( 0 + ( i · 0 ) ) ) |
24 |
19 23
|
ax-mp |
⊢ ( 0 · 0 ) = ( 0 + ( i · 0 ) ) |
25 |
|
0re |
⊢ 0 ∈ ℝ |
26 |
|
mul02lem2 |
⊢ ( 0 ∈ ℝ → ( 0 · 0 ) = 0 ) |
27 |
25 26
|
ax-mp |
⊢ ( 0 · 0 ) = 0 |
28 |
24 27
|
eqtr3i |
⊢ ( 0 + ( i · 0 ) ) = 0 |
29 |
17 28
|
eqtrdi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) |
30 |
|
oveq2 |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 0 · 𝐴 ) = 0 ↔ ( 0 · ( 𝑥 + ( i · 𝑦 ) ) ) = 0 ) ) |
32 |
29 31
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = 0 ) ) |
33 |
32
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 0 · 𝐴 ) = 0 ) |
34 |
1 33
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) |