Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
3 |
|
mul02lem1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) ∧ 1 ∈ ℂ ) → 1 = ( 1 + 1 ) ) |
4 |
2 3
|
mpan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → 1 = ( 1 + 1 ) ) |
5 |
4
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( 1 + 1 ) = 1 ) |
6 |
5
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( ( i · i ) + ( 1 + 1 ) ) = ( ( i · i ) + 1 ) ) |
7 |
|
ax-icn |
⊢ i ∈ ℂ |
8 |
7 7
|
mulcli |
⊢ ( i · i ) ∈ ℂ |
9 |
8 2 2
|
addassi |
⊢ ( ( ( i · i ) + 1 ) + 1 ) = ( ( i · i ) + ( 1 + 1 ) ) |
10 |
|
ax-i2m1 |
⊢ ( ( i · i ) + 1 ) = 0 |
11 |
10
|
oveq1i |
⊢ ( ( ( i · i ) + 1 ) + 1 ) = ( 0 + 1 ) |
12 |
9 11
|
eqtr3i |
⊢ ( ( i · i ) + ( 1 + 1 ) ) = ( 0 + 1 ) |
13 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
14 |
10 13
|
eqtr4i |
⊢ ( ( i · i ) + 1 ) = ( 0 + 0 ) |
15 |
6 12 14
|
3eqtr3g |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( 0 + 1 ) = ( 0 + 0 ) ) |
16 |
|
1re |
⊢ 1 ∈ ℝ |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
|
readdcan |
⊢ ( ( 1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) ) |
19 |
16 17 17 18
|
mp3an |
⊢ ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) |
20 |
15 19
|
sylib |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → 1 = 0 ) |
21 |
20
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 · 𝐴 ) ≠ 0 → 1 = 0 ) ) |
22 |
21
|
necon1d |
⊢ ( 𝐴 ∈ ℝ → ( 1 ≠ 0 → ( 0 · 𝐴 ) = 0 ) ) |
23 |
1 22
|
mpi |
⊢ ( 𝐴 ∈ ℝ → ( 0 · 𝐴 ) = 0 ) |