Metamath Proof Explorer


Theorem mul0ord

Description: If a product is zero, one of its factors must be zero. Theorem I.11 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses msq0d.1 ( 𝜑𝐴 ∈ ℂ )
mul0ord.2 ( 𝜑𝐵 ∈ ℂ )
Assertion mul0ord ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) )

Proof

Step Hyp Ref Expression
1 msq0d.1 ( 𝜑𝐴 ∈ ℂ )
2 mul0ord.2 ( 𝜑𝐵 ∈ ℂ )
3 mul0or ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) )