Metamath Proof Explorer


Theorem mul12i

Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Hypotheses mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
mul.3 𝐶 ∈ ℂ
Assertion mul12i ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) )

Proof

Step Hyp Ref Expression
1 mul.1 𝐴 ∈ ℂ
2 mul.2 𝐵 ∈ ℂ
3 mul.3 𝐶 ∈ ℂ
4 mul12 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) ) )
5 1 2 3 4 mp3an ( 𝐴 · ( 𝐵 · 𝐶 ) ) = ( 𝐵 · ( 𝐴 · 𝐶 ) )