Step |
Hyp |
Ref |
Expression |
1 |
|
mul2lt0.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
mul2lt0.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
1 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
4 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
5 |
3 4
|
ltnled |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ ¬ 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ 𝐴 ) |
9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ 𝐵 ) |
10 |
6 7 8 9
|
mulge0d |
⊢ ( ( 𝜑 ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 · 𝐵 ) ) |
11 |
10
|
ex |
⊢ ( 𝜑 → ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) → 0 ≤ ( 𝐴 · 𝐵 ) ) ) |
12 |
11
|
con3d |
⊢ ( 𝜑 → ( ¬ 0 ≤ ( 𝐴 · 𝐵 ) → ¬ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
13 |
5 12
|
sylbid |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 → ¬ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
14 |
|
ianor |
⊢ ( ¬ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ↔ ( ¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵 ) ) |
15 |
13 14
|
syl6ib |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 → ( ¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵 ) ) ) |
16 |
1 4
|
ltnled |
⊢ ( 𝜑 → ( 𝐴 < 0 ↔ ¬ 0 ≤ 𝐴 ) ) |
17 |
2 4
|
ltnled |
⊢ ( 𝜑 → ( 𝐵 < 0 ↔ ¬ 0 ≤ 𝐵 ) ) |
18 |
16 17
|
orbi12d |
⊢ ( 𝜑 → ( ( 𝐴 < 0 ∨ 𝐵 < 0 ) ↔ ( ¬ 0 ≤ 𝐴 ∨ ¬ 0 ≤ 𝐵 ) ) ) |
19 |
15 18
|
sylibrd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 → ( 𝐴 < 0 ∨ 𝐵 < 0 ) ) ) |
20 |
19
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐴 < 0 ∨ 𝐵 < 0 ) ) |
21 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 𝐴 < 0 ) |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐴 ∈ ℝ ) |
23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐵 ∈ ℝ ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐴 · 𝐵 ) < 0 ) |
25 |
22 23 24
|
mul2lt0llt0 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 0 < 𝐵 ) |
26 |
21 25
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) |
27 |
26
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐴 < 0 → ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) ) |
28 |
22 23 24
|
mul2lt0rlt0 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐵 < 0 ) → 0 < 𝐴 ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐵 < 0 ) → 𝐵 < 0 ) |
30 |
28 29
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐵 < 0 ) → ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) |
31 |
30
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐵 < 0 → ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) |
32 |
27 31
|
orim12d |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( 𝐴 < 0 ∨ 𝐵 < 0 ) → ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) ) |
33 |
20 32
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) |
34 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ ) |
35 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 0 ∈ ℝ ) |
36 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ ) |
37 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 0 < 𝐵 ) |
38 |
36 37
|
elrpd |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ+ ) |
39 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐴 < 0 ) |
40 |
34 35 38 39
|
ltmul1dd |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) < ( 0 · 𝐵 ) ) |
41 |
36
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℂ ) |
42 |
41
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → ( 0 · 𝐵 ) = 0 ) |
43 |
40 42
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 < 0 ∧ 0 < 𝐵 ) ) → ( 𝐴 · 𝐵 ) < 0 ) |
44 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐵 ∈ ℝ ) |
45 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 0 ∈ ℝ ) |
46 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐴 ∈ ℝ ) |
47 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 0 < 𝐴 ) |
48 |
46 47
|
elrpd |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐴 ∈ ℝ+ ) |
49 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐵 < 0 ) |
50 |
44 45 48 49
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → ( 𝐴 · 𝐵 ) < ( 𝐴 · 0 ) ) |
51 |
46
|
recnd |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → 𝐴 ∈ ℂ ) |
52 |
51
|
mul01d |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → ( 𝐴 · 0 ) = 0 ) |
53 |
50 52
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) → ( 𝐴 · 𝐵 ) < 0 ) |
54 |
43 53
|
jaodan |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) → ( 𝐴 · 𝐵 ) < 0 ) |
55 |
33 54
|
impbida |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) < 0 ↔ ( ( 𝐴 < 0 ∧ 0 < 𝐵 ) ∨ ( 0 < 𝐴 ∧ 𝐵 < 0 ) ) ) ) |