| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mul2lt0.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | mul2lt0.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 | 1 2 | remulcld | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 4 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 5 | 3 4 | ltnled | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  <  0  ↔  ¬  0  ≤  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 6 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 8 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) )  →  0  ≤  𝐴 ) | 
						
							| 9 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) )  →  0  ≤  𝐵 ) | 
						
							| 10 | 6 7 8 9 | mulge0d | ⊢ ( ( 𝜑  ∧  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) )  →  0  ≤  ( 𝐴  ·  𝐵 ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝜑  →  ( ( 0  ≤  𝐴  ∧  0  ≤  𝐵 )  →  0  ≤  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 12 | 11 | con3d | ⊢ ( 𝜑  →  ( ¬  0  ≤  ( 𝐴  ·  𝐵 )  →  ¬  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) ) ) | 
						
							| 13 | 5 12 | sylbid | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  <  0  →  ¬  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 ) ) ) | 
						
							| 14 |  | ianor | ⊢ ( ¬  ( 0  ≤  𝐴  ∧  0  ≤  𝐵 )  ↔  ( ¬  0  ≤  𝐴  ∨  ¬  0  ≤  𝐵 ) ) | 
						
							| 15 | 13 14 | imbitrdi | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  <  0  →  ( ¬  0  ≤  𝐴  ∨  ¬  0  ≤  𝐵 ) ) ) | 
						
							| 16 | 1 4 | ltnled | ⊢ ( 𝜑  →  ( 𝐴  <  0  ↔  ¬  0  ≤  𝐴 ) ) | 
						
							| 17 | 2 4 | ltnled | ⊢ ( 𝜑  →  ( 𝐵  <  0  ↔  ¬  0  ≤  𝐵 ) ) | 
						
							| 18 | 16 17 | orbi12d | ⊢ ( 𝜑  →  ( ( 𝐴  <  0  ∨  𝐵  <  0 )  ↔  ( ¬  0  ≤  𝐴  ∨  ¬  0  ≤  𝐵 ) ) ) | 
						
							| 19 | 15 18 | sylibrd | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  <  0  →  ( 𝐴  <  0  ∨  𝐵  <  0 ) ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  →  ( 𝐴  <  0  ∨  𝐵  <  0 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  ∧  𝐴  <  0 )  →  𝐴  <  0 ) | 
						
							| 22 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 23 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  →  𝐵  ∈  ℝ ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  →  ( 𝐴  ·  𝐵 )  <  0 ) | 
						
							| 25 | 22 23 24 | mul2lt0llt0 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  ∧  𝐴  <  0 )  →  0  <  𝐵 ) | 
						
							| 26 | 21 25 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  ∧  𝐴  <  0 )  →  ( 𝐴  <  0  ∧  0  <  𝐵 ) ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  →  ( 𝐴  <  0  →  ( 𝐴  <  0  ∧  0  <  𝐵 ) ) ) | 
						
							| 28 | 22 23 24 | mul2lt0rlt0 | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  ∧  𝐵  <  0 )  →  0  <  𝐴 ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  ∧  𝐵  <  0 )  →  𝐵  <  0 ) | 
						
							| 30 | 28 29 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  ∧  𝐵  <  0 )  →  ( 0  <  𝐴  ∧  𝐵  <  0 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  →  ( 𝐵  <  0  →  ( 0  <  𝐴  ∧  𝐵  <  0 ) ) ) | 
						
							| 32 | 27 31 | orim12d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  →  ( ( 𝐴  <  0  ∨  𝐵  <  0 )  →  ( ( 𝐴  <  0  ∧  0  <  𝐵 )  ∨  ( 0  <  𝐴  ∧  𝐵  <  0 ) ) ) ) | 
						
							| 33 | 20 32 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ·  𝐵 )  <  0 )  →  ( ( 𝐴  <  0  ∧  0  <  𝐵 )  ∨  ( 0  <  𝐴  ∧  𝐵  <  0 ) ) ) | 
						
							| 34 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 35 |  | 0red | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  0  ∈  ℝ ) | 
						
							| 36 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 37 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  0  <  𝐵 ) | 
						
							| 38 | 36 37 | elrpd | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  𝐵  ∈  ℝ+ ) | 
						
							| 39 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  𝐴  <  0 ) | 
						
							| 40 | 34 35 38 39 | ltmul1dd | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  ( 𝐴  ·  𝐵 )  <  ( 0  ·  𝐵 ) ) | 
						
							| 41 | 36 | recnd | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 42 | 41 | mul02d | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  ( 0  ·  𝐵 )  =  0 ) | 
						
							| 43 | 40 42 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  0  <  𝐵 ) )  →  ( 𝐴  ·  𝐵 )  <  0 ) | 
						
							| 44 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 45 |  | 0red | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  0  ∈  ℝ ) | 
						
							| 46 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 47 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  0  <  𝐴 ) | 
						
							| 48 | 46 47 | elrpd | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  𝐴  ∈  ℝ+ ) | 
						
							| 49 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  𝐵  <  0 ) | 
						
							| 50 | 44 45 48 49 | ltmul2dd | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  ( 𝐴  ·  𝐵 )  <  ( 𝐴  ·  0 ) ) | 
						
							| 51 | 46 | recnd | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 52 | 51 | mul01d | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 53 | 50 52 | breqtrd | ⊢ ( ( 𝜑  ∧  ( 0  <  𝐴  ∧  𝐵  <  0 ) )  →  ( 𝐴  ·  𝐵 )  <  0 ) | 
						
							| 54 | 43 53 | jaodan | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  <  0  ∧  0  <  𝐵 )  ∨  ( 0  <  𝐴  ∧  𝐵  <  0 ) ) )  →  ( 𝐴  ·  𝐵 )  <  0 ) | 
						
							| 55 | 33 54 | impbida | ⊢ ( 𝜑  →  ( ( 𝐴  ·  𝐵 )  <  0  ↔  ( ( 𝐴  <  0  ∧  0  <  𝐵 )  ∨  ( 0  <  𝐴  ∧  𝐵  <  0 ) ) ) ) |