Database
REAL AND COMPLEX NUMBERS
Order sets
Positive reals (as a subset of complex numbers)
mul2lt0llt0
Metamath Proof Explorer
Description: If the result of a multiplication is strictly negative, then
multiplicands are of different signs. (Contributed by Thierry Arnoux , 19-Sep-2018)
Ref
Expression
Hypotheses
mul2lt0.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
mul2lt0.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ )
mul2lt0.3
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 )
Assertion
mul2lt0llt0
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
mul2lt0.1
⊢ ( 𝜑 → 𝐴 ∈ ℝ )
2
mul2lt0.2
⊢ ( 𝜑 → 𝐵 ∈ ℝ )
3
mul2lt0.3
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 )
4
1
recnd
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
5
2
recnd
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
6
4 5
mulcomd
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
7
6 3
eqbrtrrd
⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) < 0 )
8
2 1 7
mul2lt0rlt0
⊢ ( ( 𝜑 ∧ 𝐴 < 0 ) → 0 < 𝐵 )