Metamath Proof Explorer


Theorem mul2lt0rgt0

Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses mul2lt0.1 ( 𝜑𝐴 ∈ ℝ )
mul2lt0.2 ( 𝜑𝐵 ∈ ℝ )
mul2lt0.3 ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 )
Assertion mul2lt0rgt0 ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 < 0 )

Proof

Step Hyp Ref Expression
1 mul2lt0.1 ( 𝜑𝐴 ∈ ℝ )
2 mul2lt0.2 ( 𝜑𝐵 ∈ ℝ )
3 mul2lt0.3 ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 )
4 3 adantr ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 · 𝐵 ) < 0 )
5 2 adantr ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ )
6 5 recnd ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℂ )
7 6 mul02d ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 0 · 𝐵 ) = 0 )
8 4 7 breqtrrd ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 · 𝐵 ) < ( 0 · 𝐵 ) )
9 1 adantr ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 ∈ ℝ )
10 0red ( ( 𝜑 ∧ 0 < 𝐵 ) → 0 ∈ ℝ )
11 simpr ( ( 𝜑 ∧ 0 < 𝐵 ) → 0 < 𝐵 )
12 5 11 elrpd ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ+ )
13 9 10 12 ltmul1d ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 < 0 ↔ ( 𝐴 · 𝐵 ) < ( 0 · 𝐵 ) ) )
14 8 13 mpbird ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 < 0 )