Step |
Hyp |
Ref |
Expression |
1 |
|
mul2lt0.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
mul2lt0.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
mul2lt0.3 |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) |
4 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 · 𝐵 ) < 0 ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℂ ) |
7 |
6
|
mul02d |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 0 · 𝐵 ) = 0 ) |
8 |
4 7
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 · 𝐵 ) < ( 0 · 𝐵 ) ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 ∈ ℝ ) |
10 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 0 ∈ ℝ ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 0 < 𝐵 ) |
12 |
5 11
|
elrpd |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ+ ) |
13 |
9 10 12
|
ltmul1d |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( 𝐴 < 0 ↔ ( 𝐴 · 𝐵 ) < ( 0 · 𝐵 ) ) ) |
14 |
8 13
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 < 0 ) |