Description: Product of two negatives. Theorem I.12 of Apostol p. 18. (Contributed by NM, 30-Jul-2004) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul2neg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 2 | mulneg12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · - - 𝐵 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · - - 𝐵 ) ) |
| 4 | negneg | ⊢ ( 𝐵 ∈ ℂ → - - 𝐵 = 𝐵 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - - 𝐵 = 𝐵 ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 7 | 3 6 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |