Metamath Proof Explorer
Description: Product of two negatives. Theorem I.12 of Apostol p. 18.
(Contributed by NM, 14-Feb-1995) (Revised by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
mulm1.1 |
⊢ 𝐴 ∈ ℂ |
|
|
mulneg.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
mul2negi |
⊢ ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mulm1.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
mulneg.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
mul2neg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) |