Metamath Proof Explorer


Theorem mul2negsd

Description: Surreal product of two negatives. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1 ( 𝜑𝐴 No )
mulnegs1d.2 ( 𝜑𝐵 No )
Assertion mul2negsd ( 𝜑 → ( ( -us𝐴 ) ·s ( -us𝐵 ) ) = ( 𝐴 ·s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mulnegs1d.1 ( 𝜑𝐴 No )
2 mulnegs1d.2 ( 𝜑𝐵 No )
3 2 negscld ( 𝜑 → ( -us𝐵 ) ∈ No )
4 1 3 mulnegs1d ( 𝜑 → ( ( -us𝐴 ) ·s ( -us𝐵 ) ) = ( -us ‘ ( 𝐴 ·s ( -us𝐵 ) ) ) )
5 1 2 mulnegs2d ( 𝜑 → ( 𝐴 ·s ( -us𝐵 ) ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) )
6 5 fveq2d ( 𝜑 → ( -us ‘ ( 𝐴 ·s ( -us𝐵 ) ) ) = ( -us ‘ ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) )
7 1 2 mulscld ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No )
8 negnegs ( ( 𝐴 ·s 𝐵 ) ∈ No → ( -us ‘ ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) = ( 𝐴 ·s 𝐵 ) )
9 7 8 syl ( 𝜑 → ( -us ‘ ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) = ( 𝐴 ·s 𝐵 ) )
10 4 6 9 3eqtrd ( 𝜑 → ( ( -us𝐴 ) ·s ( -us𝐵 ) ) = ( 𝐴 ·s 𝐵 ) )