Metamath Proof Explorer
Description: Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by NM, 11-May-1999)
|
|
Ref |
Expression |
|
Hypotheses |
mul.1 |
⊢ 𝐴 ∈ ℂ |
|
|
mul.2 |
⊢ 𝐵 ∈ ℂ |
|
|
mul.3 |
⊢ 𝐶 ∈ ℂ |
|
Assertion |
mul32i |
⊢ ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) · 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mul.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
mul.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
mul.3 |
⊢ 𝐶 ∈ ℂ |
4 |
|
mul32 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) · 𝐵 ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) · 𝐵 ) |