Metamath Proof Explorer


Theorem mul4d

Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses muld.1 ( 𝜑𝐴 ∈ ℂ )
addcomd.2 ( 𝜑𝐵 ∈ ℂ )
addcand.3 ( 𝜑𝐶 ∈ ℂ )
mul4d.4 ( 𝜑𝐷 ∈ ℂ )
Assertion mul4d ( 𝜑 → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · ( 𝐵 · 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 muld.1 ( 𝜑𝐴 ∈ ℂ )
2 addcomd.2 ( 𝜑𝐵 ∈ ℂ )
3 addcand.3 ( 𝜑𝐶 ∈ ℂ )
4 mul4d.4 ( 𝜑𝐷 ∈ ℂ )
5 mul4 ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · ( 𝐵 · 𝐷 ) ) )
6 1 2 3 4 5 syl22anc ( 𝜑 → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · ( 𝐵 · 𝐷 ) ) )