Metamath Proof Explorer


Theorem mul4i

Description: Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995)

Ref Expression
Hypotheses mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
mul.3 𝐶 ∈ ℂ
mul4.4 𝐷 ∈ ℂ
Assertion mul4i ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · ( 𝐵 · 𝐷 ) )

Proof

Step Hyp Ref Expression
1 mul.1 𝐴 ∈ ℂ
2 mul.2 𝐵 ∈ ℂ
3 mul.3 𝐶 ∈ ℂ
4 mul4.4 𝐷 ∈ ℂ
5 mul4 ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · ( 𝐵 · 𝐷 ) ) )
6 1 2 3 4 5 mp4an ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) · ( 𝐵 · 𝐷 ) )