Step |
Hyp |
Ref |
Expression |
1 |
|
mulcom |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝐶 · 𝐷 ) = ( 𝐷 · 𝐶 ) ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐶 · 𝐷 ) = ( 𝐷 · 𝐶 ) ) |
3 |
2
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐵 ) · ( 𝐷 · 𝐶 ) ) ) |
4 |
|
mul4 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐷 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐵 · 𝐶 ) ) ) |
5 |
4
|
ancom2s |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐷 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐵 · 𝐶 ) ) ) |
6 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) |
7 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ ) |
8 |
6 7
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
9 |
8
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐷 ) · ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐶 · 𝐵 ) ) ) |
10 |
3 5 9
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 · 𝐷 ) ) = ( ( 𝐴 · 𝐷 ) · ( 𝐶 · 𝐵 ) ) ) |