Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 + 𝐴 ) ∈ ℂ ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( 1 + 𝐴 ) ∈ ℂ ) |
4 |
|
adddi |
⊢ ( ( ( 1 + 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( ( 1 + 𝐴 ) · 1 ) + ( ( 1 + 𝐴 ) · 𝐵 ) ) ) |
5 |
1 4
|
mp3an2 |
⊢ ( ( ( 1 + 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( ( 1 + 𝐴 ) · 1 ) + ( ( 1 + 𝐴 ) · 𝐵 ) ) ) |
6 |
3 5
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( ( 1 + 𝐴 ) · 1 ) + ( ( 1 + 𝐴 ) · 𝐵 ) ) ) |
7 |
3
|
mulid1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 𝐴 ) · 1 ) = ( 1 + 𝐴 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · 1 ) = ( 1 + 𝐴 ) ) |
9 |
|
adddir |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · 𝐵 ) = ( ( 1 · 𝐵 ) + ( 𝐴 · 𝐵 ) ) ) |
10 |
1 9
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · 𝐵 ) = ( ( 1 · 𝐵 ) + ( 𝐴 · 𝐵 ) ) ) |
11 |
|
mulid2 |
⊢ ( 𝐵 ∈ ℂ → ( 1 · 𝐵 ) = 𝐵 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 · 𝐵 ) = 𝐵 ) |
13 |
12
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 · 𝐵 ) + ( 𝐴 · 𝐵 ) ) = ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) |
14 |
10 13
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · 𝐵 ) = ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) |
15 |
8 14
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 1 + 𝐴 ) · 1 ) + ( ( 1 + 𝐴 ) · 𝐵 ) ) = ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) |
16 |
6 15
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) |