Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
2 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 1 ∈ ℂ ) |
3 |
1 2
|
addcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
5 |
4 2
|
addcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + 1 ) = ( 1 + 𝐵 ) ) |
6 |
3 5
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 1 ) · ( 𝐵 + 1 ) ) = ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) ) |
7 |
|
muladd11 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) · ( 1 + 𝐵 ) ) = ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) |
8 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
9 |
4 8
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
10 |
2 1 9
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) = ( 1 + ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) ) |
11 |
1 9
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ∈ ℂ ) |
12 |
2 11
|
addcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 + ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) = ( ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) + 1 ) ) |
13 |
1 4 8
|
addassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐴 · 𝐵 ) ) = ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) ) |
14 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
15 |
14 8
|
addcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
16 |
13 15
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) + 1 ) = ( ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) + 1 ) ) |
18 |
10 12 17
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 + 𝐴 ) + ( 𝐵 + ( 𝐴 · 𝐵 ) ) ) = ( ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) + 1 ) ) |
19 |
6 7 18
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 1 ) · ( 𝐵 + 1 ) ) = ( ( ( 𝐴 · 𝐵 ) + ( 𝐴 + 𝐵 ) ) + 1 ) ) |