Description: Product of two sums. (Contributed by NM, 17-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulm1.1 | ⊢ 𝐴 ∈ ℂ | |
mulneg.2 | ⊢ 𝐵 ∈ ℂ | ||
subdi.3 | ⊢ 𝐶 ∈ ℂ | ||
muladdi.4 | ⊢ 𝐷 ∈ ℂ | ||
Assertion | muladdi | ⊢ ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1.1 | ⊢ 𝐴 ∈ ℂ | |
2 | mulneg.2 | ⊢ 𝐵 ∈ ℂ | |
3 | subdi.3 | ⊢ 𝐶 ∈ ℂ | |
4 | muladdi.4 | ⊢ 𝐷 ∈ ℂ | |
5 | muladd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) ) | |
6 | 1 2 3 4 5 | mp4an | ⊢ ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) |