Metamath Proof Explorer


Theorem muladdi

Description: Product of two sums. (Contributed by NM, 17-May-1999)

Ref Expression
Hypotheses mulm1.1 𝐴 ∈ ℂ
mulneg.2 𝐵 ∈ ℂ
subdi.3 𝐶 ∈ ℂ
muladdi.4 𝐷 ∈ ℂ
Assertion muladdi ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 mulm1.1 𝐴 ∈ ℂ
2 mulneg.2 𝐵 ∈ ℂ
3 subdi.3 𝐶 ∈ ℂ
4 muladdi.4 𝐷 ∈ ℂ
5 muladd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) ) )
6 1 2 3 4 5 mp4an ( ( 𝐴 + 𝐵 ) · ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐷 · 𝐵 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐶 · 𝐵 ) ) )