Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( 𝑀 ∈ ℝ+ → 0 ∈ ℝ ) |
2 |
|
rpxr |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ* ) |
3 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ* ) → ( 𝐴 ∈ ( 0 [,) 𝑀 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝑀 ∈ ℝ+ → ( 𝐴 ∈ ( 0 [,) 𝑀 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 ∈ ( 0 [,) 𝑀 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) ) |
6 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
7 |
|
rpcn |
⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) |
8 |
|
mulcl |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝑁 · 𝑀 ) ∈ ℂ ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝑁 · 𝑀 ) ∈ ℂ ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝑁 · 𝑀 ) ∈ ℂ ) |
11 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) → 𝐴 ∈ ℂ ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → 𝐴 ∈ ℂ ) |
14 |
10 13
|
addcomd |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( ( 𝑁 · 𝑀 ) + 𝐴 ) = ( 𝐴 + ( 𝑁 · 𝑀 ) ) ) |
15 |
14
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = ( ( 𝐴 + ( 𝑁 · 𝑀 ) ) mod 𝑀 ) ) |
16 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) → 𝐴 ∈ ℝ ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → 𝐴 ∈ ℝ ) |
18 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ+ ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
20 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → 𝑁 ∈ ℤ ) |
21 |
|
modcyc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 + ( 𝑁 · 𝑀 ) ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) |
22 |
17 19 20 21
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( ( 𝐴 + ( 𝑁 · 𝑀 ) ) mod 𝑀 ) = ( 𝐴 mod 𝑀 ) ) |
23 |
18 16
|
anim12ci |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
24 |
|
3simpc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) |
26 |
|
modid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝐴 mod 𝑀 ) = 𝐴 ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( 𝐴 mod 𝑀 ) = 𝐴 ) |
28 |
15 22 27
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) |
29 |
28
|
ex |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀 ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) ) |
30 |
5 29
|
sylbid |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 ∈ ( 0 [,) 𝑀 ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) ) |
31 |
30
|
3impia |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ ( 0 [,) 𝑀 ) ) → ( ( ( 𝑁 · 𝑀 ) + 𝐴 ) mod 𝑀 ) = 𝐴 ) |