Step |
Hyp |
Ref |
Expression |
1 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
2 |
|
pinn |
⊢ ( 𝐵 ∈ N → 𝐵 ∈ ω ) |
3 |
|
pinn |
⊢ ( 𝐶 ∈ N → 𝐶 ∈ ω ) |
4 |
|
nnmass |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
6 |
|
mulclpi |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) ∈ N ) |
7 |
|
mulpiord |
⊢ ( ( ( 𝐴 ·N 𝐵 ) ∈ N ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( ( 𝐴 ·N 𝐵 ) ·o 𝐶 ) ) |
8 |
6 7
|
sylan |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( ( 𝐴 ·N 𝐵 ) ·o 𝐶 ) ) |
9 |
|
mulpiord |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ·N 𝐵 ) = ( 𝐴 ·o 𝐵 ) ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) ·o 𝐶 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) ·o 𝐶 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) ) |
12 |
8 11
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) ) |
13 |
12
|
3impa |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( ( 𝐴 ·o 𝐵 ) ·o 𝐶 ) ) |
14 |
|
mulclpi |
⊢ ( ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐵 ·N 𝐶 ) ∈ N ) |
15 |
|
mulpiord |
⊢ ( ( 𝐴 ∈ N ∧ ( 𝐵 ·N 𝐶 ) ∈ N ) → ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·N 𝐶 ) ) ) |
16 |
14 15
|
sylan2 |
⊢ ( ( 𝐴 ∈ N ∧ ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) ) → ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·N 𝐶 ) ) ) |
17 |
|
mulpiord |
⊢ ( ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐵 ·N 𝐶 ) = ( 𝐵 ·o 𝐶 ) ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·o ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝐴 ∈ N ∧ ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) ) → ( 𝐴 ·o ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
20 |
16 19
|
eqtrd |
⊢ ( ( 𝐴 ∈ N ∧ ( 𝐵 ∈ N ∧ 𝐶 ∈ N ) ) → ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
21 |
20
|
3impb |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) = ( 𝐴 ·o ( 𝐵 ·o 𝐶 ) ) ) |
22 |
5 13 21
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) ) |
23 |
|
dmmulpi |
⊢ dom ·N = ( N × N ) |
24 |
|
0npi |
⊢ ¬ ∅ ∈ N |
25 |
23 24
|
ndmovass |
⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N ) → ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) ) |
26 |
22 25
|
pm2.61i |
⊢ ( ( 𝐴 ·N 𝐵 ) ·N 𝐶 ) = ( 𝐴 ·N ( 𝐵 ·N 𝐶 ) ) |