Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
⊢ R = ( ( P × P ) / ~R ) |
2 |
|
mulsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 𝑧 , 𝑤 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ) |
3 |
|
mulsrpr |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ~R ·R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) , ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) 〉 ] ~R ) |
4 |
|
mulsrpr |
⊢ ( ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( [ 〈 ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) , ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) 〉 ] ~R ·R [ 〈 𝑣 , 𝑢 〉 ] ~R ) = [ 〈 ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ·P 𝑣 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ·P 𝑢 ) ) , ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ·P 𝑢 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ·P 𝑣 ) ) 〉 ] ~R ) |
5 |
|
mulsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ∧ ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) , ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ) +P ( 𝑦 ·P ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ) ) , ( ( 𝑥 ·P ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ) +P ( 𝑦 ·P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ) ) 〉 ] ~R ) |
6 |
|
mulclpr |
⊢ ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑥 ·P 𝑧 ) ∈ P ) |
7 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑦 ·P 𝑤 ) ∈ P ) |
8 |
|
addclpr |
⊢ ( ( ( 𝑥 ·P 𝑧 ) ∈ P ∧ ( 𝑦 ·P 𝑤 ) ∈ P ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑧 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
10 |
9
|
an4s |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ) |
11 |
|
mulclpr |
⊢ ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) → ( 𝑥 ·P 𝑤 ) ∈ P ) |
12 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) → ( 𝑦 ·P 𝑧 ) ∈ P ) |
13 |
|
addclpr |
⊢ ( ( ( 𝑥 ·P 𝑤 ) ∈ P ∧ ( 𝑦 ·P 𝑧 ) ∈ P ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑦 ∈ P ∧ 𝑧 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
15 |
14
|
an42s |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) |
16 |
10 15
|
jca |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ) → ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ∈ P ∧ ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ∈ P ) ) |
17 |
|
mulclpr |
⊢ ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑧 ·P 𝑣 ) ∈ P ) |
18 |
|
mulclpr |
⊢ ( ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑤 ·P 𝑢 ) ∈ P ) |
19 |
|
addclpr |
⊢ ( ( ( 𝑧 ·P 𝑣 ) ∈ P ∧ ( 𝑤 ·P 𝑢 ) ∈ P ) → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑣 ∈ P ) ∧ ( 𝑤 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ) |
21 |
20
|
an4s |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ) |
22 |
|
mulclpr |
⊢ ( ( 𝑧 ∈ P ∧ 𝑢 ∈ P ) → ( 𝑧 ·P 𝑢 ) ∈ P ) |
23 |
|
mulclpr |
⊢ ( ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) → ( 𝑤 ·P 𝑣 ) ∈ P ) |
24 |
|
addclpr |
⊢ ( ( ( 𝑧 ·P 𝑢 ) ∈ P ∧ ( 𝑤 ·P 𝑣 ) ∈ P ) → ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑢 ∈ P ) ∧ ( 𝑤 ∈ P ∧ 𝑣 ∈ P ) ) → ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) |
26 |
25
|
an42s |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) |
27 |
21 26
|
jca |
⊢ ( ( ( 𝑧 ∈ P ∧ 𝑤 ∈ P ) ∧ ( 𝑣 ∈ P ∧ 𝑢 ∈ P ) ) → ( ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ∈ P ∧ ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ∈ P ) ) |
28 |
|
vex |
⊢ 𝑥 ∈ V |
29 |
|
vex |
⊢ 𝑦 ∈ V |
30 |
|
vex |
⊢ 𝑧 ∈ V |
31 |
|
mulcompr |
⊢ ( 𝑓 ·P 𝑔 ) = ( 𝑔 ·P 𝑓 ) |
32 |
|
distrpr |
⊢ ( 𝑓 ·P ( 𝑔 +P ℎ ) ) = ( ( 𝑓 ·P 𝑔 ) +P ( 𝑓 ·P ℎ ) ) |
33 |
|
vex |
⊢ 𝑤 ∈ V |
34 |
|
vex |
⊢ 𝑣 ∈ V |
35 |
|
mulasspr |
⊢ ( ( 𝑓 ·P 𝑔 ) ·P ℎ ) = ( 𝑓 ·P ( 𝑔 ·P ℎ ) ) |
36 |
|
vex |
⊢ 𝑢 ∈ V |
37 |
|
addcompr |
⊢ ( 𝑓 +P 𝑔 ) = ( 𝑔 +P 𝑓 ) |
38 |
|
addasspr |
⊢ ( ( 𝑓 +P 𝑔 ) +P ℎ ) = ( 𝑓 +P ( 𝑔 +P ℎ ) ) |
39 |
28 29 30 31 32 33 34 35 36 37 38
|
caovlem2 |
⊢ ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ·P 𝑣 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ·P 𝑢 ) ) = ( ( 𝑥 ·P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ) +P ( 𝑦 ·P ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ) ) |
40 |
28 29 30 31 32 33 36 35 34 37 38
|
caovlem2 |
⊢ ( ( ( ( 𝑥 ·P 𝑧 ) +P ( 𝑦 ·P 𝑤 ) ) ·P 𝑢 ) +P ( ( ( 𝑥 ·P 𝑤 ) +P ( 𝑦 ·P 𝑧 ) ) ·P 𝑣 ) ) = ( ( 𝑥 ·P ( ( 𝑧 ·P 𝑢 ) +P ( 𝑤 ·P 𝑣 ) ) ) +P ( 𝑦 ·P ( ( 𝑧 ·P 𝑣 ) +P ( 𝑤 ·P 𝑢 ) ) ) ) |
41 |
1 2 3 4 5 16 27 39 40
|
ecovass |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( ( 𝐴 ·R 𝐵 ) ·R 𝐶 ) = ( 𝐴 ·R ( 𝐵 ·R 𝐶 ) ) ) |
42 |
|
dmmulsr |
⊢ dom ·R = ( R × R ) |
43 |
|
0nsr |
⊢ ¬ ∅ ∈ R |
44 |
42 43
|
ndmovass |
⊢ ( ¬ ( 𝐴 ∈ R ∧ 𝐵 ∈ R ∧ 𝐶 ∈ R ) → ( ( 𝐴 ·R 𝐵 ) ·R 𝐶 ) = ( 𝐴 ·R ( 𝐵 ·R 𝐶 ) ) ) |
45 |
41 44
|
pm2.61i |
⊢ ( ( 𝐴 ·R 𝐵 ) ·R 𝐶 ) = ( 𝐴 ·R ( 𝐵 ·R 𝐶 ) ) |