Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Reciprocals
mulcan2ad
Metamath Proof Explorer
Description: Cancellation of a nonzero factor on the right in an equation. One-way
deduction form of mulcan2d . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
mulcanad.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
mulcanad.2
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
mulcanad.3
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
mulcanad.4
⊢ ( 𝜑 → 𝐶 ≠ 0 )
mulcan2ad.5
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) )
Assertion
mulcan2ad
⊢ ( 𝜑 → 𝐴 = 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
mulcanad.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
2
mulcanad.2
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
3
mulcanad.3
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
4
mulcanad.4
⊢ ( 𝜑 → 𝐶 ≠ 0 )
5
mulcan2ad.5
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) )
6
1 2 3 4
mulcan2d
⊢ ( 𝜑 → ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ↔ 𝐴 = 𝐵 ) )
7
5 6
mpbid
⊢ ( 𝜑 → 𝐴 = 𝐵 )